gọi x vận tốc của xe thứ 1
y là vận tốc của xe thứ 2 (km/h)
(y>0;x>10)
vì vận tốc xe thứ 1 lớn hơn xe thứ 2 là 10km /h nên ta có phương trình:
x-y=10(1)
thgian xe thứ 1 đi hết quãng đường AB là \(\dfrac{100}{x}\)(h)
thgian xe thứ 2 đi hết quãng đường AB là \(\dfrac{100}{y}\)(h)
vì xe thứ 1 đến B trước xe thứu 2là 30'=\(\dfrac{1}{2}\)h nên ta có phương trình:
\(\dfrac{100}{y}-\dfrac{100}{x}\)=\(\dfrac{1}{2}\)(2)
từ (1) và (2) at có hệ phương trình:
\(\left\{{}\begin{matrix}x-y=10\\\dfrac{100}{y}-\dfrac{100}{x}=\dfrac{1}{2}\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x-y=10\\\dfrac{1}{y}-\dfrac{1}{x}=\dfrac{1}{200}\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x-y=10\\\dfrac{x-y}{xy}=\dfrac{1}{200}\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x-y=10\\xy=2000\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x=10+y\\\text{y ( 10 + y ) = 2000}\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=10+y\\\text{y^2 + 10y − 2000 = 0 }\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x=10+y\\\text{( y − 40 ) ( y + 50 ) = 0}\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=10+y\\\left[{}\begin{matrix}y=40\left(TM\right)\\y=-50\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x=50\\y=40\end{matrix}\right.\)
vậy...