Bài 4:
\(S_2=\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^3+...+\left(\dfrac{1}{3}\right)^{99}\)
=>\(9\cdot S_2=3+\left(\dfrac{1}{3}\right)^1+...+\left(\dfrac{1}{3}\right)^{97}\)
=>\(9\cdot S_2-S_2=3+\left(\dfrac{1}{3}\right)^1+...+\left(\dfrac{1}{3}\right)^{97}-\dfrac{1}{3}-...-\left(\dfrac{1}{3}\right)^{99}\)
=>\(8\cdot S_2=3-\left(\dfrac{1}{3}\right)^{99}=3-\dfrac{1}{3^{99}}=\dfrac{3^{100}-1}{3^{99}}\)
=>\(S_2=\dfrac{3^{100}-1}{3^{99}\cdot8}\)
Bài 3:
Đặt \(A=1+5^2+5^4+...+5^{2x}\)
=>\(25A=5^2+5^4+5^6+...+5^{2x+2}\)
=>\(25A-A=5^2+5^4+...+5^{2x+2}-1-5^2-...-5^{2x}\)
=>\(24A=5^{2x+2}-1\)
=>\(A=\dfrac{5^{2x+2}-1}{24}\)
\(1+5^2+...+5^{2x}=\dfrac{25^6-1}{24}\)
=>\(\dfrac{5^{2x+2}-1}{24}=\dfrac{25^6-1}{24}\)
=>\(5^{2x+2}=25^6=5^{12}\)
=>2x+2=12
=>2x=10
=>x=5