Bài 2:
Ta có: \(5^x.5^{x+2}\le10^{18}\div2^8\)
\(\Rightarrow5^{x+x+2}\le\left(10\div2\right)^{18}\)
\(\Rightarrow5^{2x+2}\le5^{18}\)
\(\Rightarrow2x+2\le18\Rightarrow2x\le16\Rightarrow x\le8\)
\(\Rightarrow x\in\left\{0;1;2;3;4;5;6;7;8\right\}\)
Bài 3:
Ta có: \(S=1+2+2^2+...+2^9=\left(2+2^2+...+2^{10}\right)-\left(1+2+2^2+...+2^9\right)\)
\(=2^{10}-1\left(1\right)\)
Ta có: \(5\times2^8=\left(2^2+1\right)\times2^8=2^{10}+2^8\left(2\right)\)
Từ (1) và (2) \(\Rightarrow S< 5\times2^8\)