Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
dũng trần

Bài 2: Cho biểu thức: D= 1 x+4 + x x-4 + (24 - x ^ 2)/(x ^ 2 - 16) * voi x ne pm4.
1) Chứng minh D= 5/(x - 4) *
2) Tính giá trị của biểu thức Dtaix = 10
3) Cho M = (x-2).D. Tìm các số tự nhiên x để giá trị của biểu thức M là số nguyên.

Nguyễn Lê Phước Thịnh
15 tháng 12 2023 lúc 20:19

1: \(D=\dfrac{1}{x+4}+\dfrac{x}{x-4}+\dfrac{24-x^2}{x^2-16}\)

\(=\dfrac{1}{x+4}+\dfrac{x}{x-4}+\dfrac{24-x^2}{\left(x+4\right)\left(x-4\right)}\)

\(=\dfrac{x-4+x\left(x+4\right)+24-x^2}{\left(x+4\right)\left(x-4\right)}\)

\(=\dfrac{-x^2+x+20+x^2+4x}{\left(x+4\right)\left(x-4\right)}=\dfrac{5x+20}{\left(x+4\right)\left(x-4\right)}\)

\(=\dfrac{5\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}=\dfrac{5}{x-4}\)

2: Khi x=10 thì \(D=\dfrac{5}{10-4}=\dfrac{5}{6}\)

3: \(M=\left(x-2\right)\cdot D=\dfrac{5\left(x-2\right)}{x-4}\)

Để M là số nguyên thì \(5\cdot\left(x-2\right)⋮x-4\)

=>\(5\left(x-4+2\right)⋮x-4\)

=>\(5\left(x-4\right)+10⋮x-4\)

=>\(10⋮x-4\)

=>\(x-4\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)

=>\(x\in\left\{5;3;6;2;9;-1;14;-6\right\}\)


Các câu hỏi tương tự
dũng trần
Xem chi tiết
Ngô Linh
Xem chi tiết
Nguyễn Linh
Xem chi tiết
My Nguyen Tra
Xem chi tiết
thùy linh
Xem chi tiết
Nàng tiên cá
Xem chi tiết
Nhật Thiên
Xem chi tiết
Gumm
Xem chi tiết
Trần Ngọc Bảo Ngân
Xem chi tiết