Bài 1
\(\frac{2017}{2018}+\frac{2018}{2019}\)và \(\left(\frac{2017+2018}{2018+2019}\right)\)mk chữa lại đề luôn đó
Ta tách :
\(\frac{2017}{\left(2018+2019\right)+2018}\)
đến đây ta tách
\(\frac{2017}{2018+2019}< \frac{2017}{2018}\)
vậy....
mấy câu khác tương tự
2) \(\frac{\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}}{\frac{2}{2003}+\frac{2}{2004}+\frac{2}{2005}}\)
= \(\frac{\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}}{2.\frac{1}{2003}+2.\frac{1}{2004}+2.\frac{1}{2005}}\)
=\(\frac{1\left(\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}\right)}{2.\left(\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}\right)}\)
= \(\frac{1}{2}\)
3) \(2013+\left(\frac{2013}{1+2}\right)+\left(\frac{2013}{1+2+3}\right)+...+\left(\frac{2013}{1+2+3+...+2012}\right)\)
= \(2013.\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2012}\right)\)
= \(2013.\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{2025078}\right)\)
= \(2013.2.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{4050156}\right)\)
=\(4026.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2012.2013}\right)\)
= \(4026.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2012}-\frac{1}{2013}\right)\)
= \(4026.\left(1-\frac{1}{2013}\right)\)
= \(4026.\frac{2012}{2013}\)
=\(4024\)