Bài 1
Cho tam giác ABC vuông tại A .Gọi D,E,F lần lượt là trung điểm của AB,AC và BC.
a) Cho BC=10cm .Tính DE
b) Chứng minh tứ giác BDEF là hình bình hành
c) Tứ giác ADEF là hình gì ? vì sao?
d) Gọi G là điểm đối xứng của F qua D .Chứng minh các đường thẳng AF,GC,DE cùng cắt nhau tại một điểm .
Bài 2
Hình vẽ bên là bản thiết kế tầng trệt của một ngôi nhà .Biết AB//CD,AE=ED,BF=FCvà AB= 7m,DC=5m
Em hãy tính độ dài đoạn thẳng EF
Bài 1:
a) Xét tam giác ABC vuông tại A có:
+ D là trung điểm của AB (gt).
+ E là trung điểm của AC (gt).
=> DE là đường trung bình (Định nghĩa đường trung bình trong tam giác).
=> DE = \(\dfrac{1}{2}\)BC (Tính chất đường trung bình trong tam giác).
Mà BC = 10 cm (gt).
=> DE = 5 cm.
Vậy DE = 5 cm.
b) Xét tam giác ABC vuông tại A có:
DE là đường trung bình (cmt)
=> DE // BC (Tính chất đường trung bình trong tam giác).
Ta có: F là trung điểm của BC (gt). => BF = CF = \(\dfrac{1}{2}\)BC.
Mà DE = \(\dfrac{1}{2}\)BC (cmt).
=> BF = CF = DE = \(\dfrac{1}{2}\)BC.
Xét tứ giác BDEF có:
+ BF = DE (cmt).
+ BF // DE (do DE // BC).
=> Tứ giác BDEF là hình bình hành (dhnb).
c) Xét tam giác ABC vuông tại A:
+ D là trung điểm của AB (gt).
+ F là trung điểm của BC (gt).
=> DF là đường trung bình (Định nghĩa đường trung bình trong tam giác).
=> DF // AC và DF = \(\dfrac{1}{2}\)AC (Tính chất đường trung bình trong tam giác).
Ta có: DF = \(\dfrac{1}{2}\)AC (cmt).
Mà AE = CE = \(\dfrac{1}{2}\)AC (E là trung điểm AC).
=> AE = CE = DF = \(\dfrac{1}{2}\)AC.
Xét tứ giác ADEF có:
+ AE = DF (cmt).
+ AE // DF (do DF // AC).
=> Tứ giác ADEF là hình bình hành (dhnb).
Mà ^DAE = 90o (do tam giác ABC vuông tại A).
=> Tứ giác ADEF là hình chữ nhật (dhnb).
d) Gọi I là giao điểm của AF và DE.
Xét hình chữ nhật ADEF có: I là giao điểm của AF và DE (cách vẽ).
=> I là trung điểm của AF và DE (Tính chất hình chữ nhật). (1)
Ta có: G là điểm đối xứng của F qua D (gt).
=> D là trung điểm của CG.
=> DF = \(\dfrac{1}{2}\)GF.
Mà DF = \(\dfrac{1}{2}\)AC (cmt).
=> GF = AC.
Xét tứ giác GACF có:
+ GF = AC (cmt).
+ GF // AC (do DF // AC).
=> Tứ giác GACF là hình bình hành (dhnb).
=> Giao điểm của 2 đường chéo AF và GC là trung điểm mỗi đường (Tính chất hình bình hành).
Mà I là trung điểm của AF (cmt)
=> I là trung điểm của GC (2).
Từ (1) và (2) => Các đường thẳng AF; GC; DE cùng cắt nhau tại điểm I.
hay các đường thẳng AF; GC; DE cùng cắt nhau tại trung điểm mỗi đường (đpcm).