Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
An Nguyễn

Bài 1

Cho tam giác ABC vuông tại A .Gọi D,E,F lần lượt là trung điểm của AB,AC và BC.

a)      Cho BC=10cm .Tính DE

b)      Chứng minh tứ giác BDEF là hình bình hành

c)       Tứ giác ADEF là hình gì ? vì sao?

d)      Gọi G là điểm đối xứng của F qua D .Chứng minh các đường thẳng AF,GC,DE cùng cắt nhau tại một điểm .

Bài  2

Hình vẽ bên là bản thiết kế tầng trệt của một ngôi nhà .Biết AB//CD,AE=ED,BF=FCvà AB= 7m,DC=5m

Em hãy tính độ dài đoạn thẳng EF

Thanh Hoàng Thanh
2 tháng 12 2021 lúc 10:08

Bài 1:

a) Xét tam giác ABC vuông tại A có: 

+ D là trung điểm của AB (gt).

+ E là trung điểm của AC (gt).

=> DE là đường trung bình (Định nghĩa đường trung bình trong tam giác).

=> DE = \(\dfrac{1}{2}\)BC (Tính chất đường trung bình trong tam giác).

Mà BC = 10 cm (gt).

=> DE = 5 cm.

Vậy DE = 5 cm.

b) Xét tam giác ABC vuông tại A có: 

DE là đường trung bình (cmt)

=> DE // BC (Tính chất đường trung bình trong tam giác).

Ta có: F là trung điểm của BC (gt). => BF = CF = \(\dfrac{1}{2}\)BC.

Mà DE = \(\dfrac{1}{2}\)BC (cmt).

=> BF = CF = DE = \(\dfrac{1}{2}\)BC.

Xét tứ giác BDEF có: 

+ BF = DE (cmt).

+ BF // DE (do DE // BC).

=> Tứ giác BDEF là hình bình hành (dhnb).

c) Xét tam giác ABC vuông tại A:

+ D là trung điểm của AB (gt).

+ F là trung điểm của BC (gt).

=> DF là đường trung bình (Định nghĩa đường trung bình trong tam giác).

=> DF // AC  và DF = \(\dfrac{1}{2}\)AC (Tính chất đường trung bình trong tam giác). 

Ta có: DF = \(\dfrac{1}{2}\)AC (cmt).

Mà AE = CE = \(\dfrac{1}{2}\)AC (E là trung điểm AC).

=> AE = CE = DF = \(\dfrac{1}{2}\)AC.

Xét tứ giác ADEF có:

+ AE = DF (cmt).

+ AE // DF (do DF // AC).

=> Tứ giác ADEF là hình bình hành (dhnb).

Mà ^DAE = 90o (do tam giác ABC vuông tại A).

=> Tứ giác ADEF là hình chữ nhật (dhnb).

d) Gọi I là giao điểm của AF và DE.

Xét hình chữ nhật ADEF có: I là giao điểm của AF và DE (cách vẽ).

=> I là trung điểm của AF và DE (Tính chất hình chữ nhật). (1)

Ta có: G là điểm đối xứng của F qua D (gt).

=> D là trung điểm của CG.

=> DF = \(\dfrac{1}{2}\)GF.

Mà DF = \(\dfrac{1}{2}\)AC (cmt).

=> GF = AC.

Xét tứ giác GACF có:

+ GF = AC (cmt).

+ GF // AC (do DF // AC).

=> Tứ giác GACF là hình bình hành (dhnb).

=> Giao điểm của 2 đường chéo AF và GC là trung điểm mỗi đường (Tính chất hình bình hành).

Mà I là trung điểm của AF (cmt)

=> I là trung điểm của GC (2).

Từ (1) và (2) => Các đường thẳng AF; GC; DE cùng cắt nhau tại điểm I.

hay các đường thẳng AF; GC; DE cùng cắt nhau tại trung điểm mỗi đường (đpcm).


Các câu hỏi tương tự
Nguyễn Thuỳ Linh
Xem chi tiết
Hồ Thị Hoài Nhung
Xem chi tiết
Hà Anh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Lai Minh Sang
Xem chi tiết
Phạm Thị Chi Mai
Xem chi tiết
Nguyễn Thuỳ Linh
Xem chi tiết
Nguyễn Đăng Khoa
Xem chi tiết
Lương Gia Thảo
Xem chi tiết