_C1_
Tìm số tự nhiên a,biết rằng 398 chia a dư 38,còn 450 chia a dư 18
_C2_
Chứng minh rằng,các số sau đây nguyên tố cùng nhau:
a,hai số lẻ liên tiếp
b,2n+5 và 3n+7
_C3_
a,Cho a là số nguyên tố lớn hơn 3.Chứng minh rằng:(a-1)x(a+4) chia hết cho 6
b,Chứng minh rằng,tích của 4 số tự nhiên liên tiếp chia hết cho 24
_C4_
ƯCLN(ước chung lớn nhất) của 2 số tự nhiên bằng 4.Số tự nhiên nhỏ là 8.Tìm số lớn
_C5_
Tìm n,sao cho:
a, n+4 chia hết cho n+1
b, n2+4 chia hết cho n+2
_Làm được bài nào thì làm,vậy thôi_
Bài 5: ( điểm)
a) Cho và . Chứng minh và là hai số tự nhiên liên tiếp.
b) Tìm số tự nhiên để là số nguyên tố.
Hai số nguyên tố gọi là sinh đôi nếu chúng là hai số nguyên tố lẻ liên tiếp. Chứng minh rằng một số tự nhiên lớn hơn 3 nằm giữa hai số nguyên tố sinh đôi thì chia hết cho 6
Hai số nguyên tố gọi là sinh đôi nếu chúng là hai số nguyên tố và là hai số lẻ liên tiếp ( chẳng hạng:3 và 5, 11 và 13...).Chứng minh rằng số tự nhiên lớn hơn 4 và nằm giữa hai số nguyên tố sinh đôi thì chia hết cho 6.
Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố
Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p
CÁC BẠN LÀM ĐƯỢC CÂU NÀO THÌ LÀM , KO BẮT BUỘC LÀM CẢ NHÉ. MÌNH CẢM ƠN TRƯỚC!
Bài 1: Cho số nguyên x sao cho x chia cho 7 dư 2. Chứng tỏ rằng 2x + 3 chia hết 7.
Bài 2: 1) Chứng minh rằng 20 + 21 + 22 + 23 + …. + 25n-3 + 25n-2 + 25n-1 chia hết cho 31 với n là số nguyên dương bất kì.
2) Hai số nguyên tố gọi là sinh đôi nếu chúng là hai số nguyên tố và là hai số lẻ liên tiếp. Chứng minh rằng số tự nhiên lớn hơn 4 và nằm giữa hai số nguyên tố sinh đôi thì chia hết cho 6.
Bài 3: Cho tam giác ABC có = 80 độ. Điểm D nằm giữa B và C sao cho = 20 độ. Trên nửa mặt phẳng chứa B bờ AC, vẽ tia Ax sao cho = 25 độ , tia này cắt CB ở E. 1) Chứng tỏ rằng E nằm giữa D và C. 2) Tính 3) Xác định vị trí của tia Ay nằm giữa hai tia AB và AC sao cho
Bài 4. 1) Tìm các số tự nhiên a, b thỏa mãn (2014a + 1)(2014a + 2) = 3b + 5
bài 1: cho n>2 và không chia hết cho 3 . cmr hai số n^2-1 và n^2+1 không thể đồng thời là số nguyên tố
bài 2:tìm số nguyên tố p sao cho các số sau cũng là số nguyên tố
câu a) p+2 và p+10
câu b) p+10 và p+20
câu c)p+2,p+6,p+8.p+12,p+14
bài 3tìm 4 số nguyên tố liên tiếp sao cho tổng của chúng cũng là số nguyên tố
bài 4:tìm 2 số tự nhiên sao cho tổng và tích của chúng cũng là số nguyên tố
B1:Cho p là số nguyên tố >3.Chứng minh rằng (p-1)(p+4) chia hết cho 6
B2:Chứng minh rằng chỉ có duy nhất 1 bộ 3 số nguyên tố mà hiệu của 2 số liên tiếp =4
B3:Tìm số nguyên tố <200, biết rằng khi chia nó cho 60 thì số dư là hợp số
B4: Tìm các số nguyên tố a,b,c biết 2a+6b+21c=78
B5:Tìm 3 số nguyên tố liên tiếp a,b,c (a<b<c) sao cho A=a^2+b^2+c^2 cũng là số nguyên tố
Giúp mình với, mình sẽ tick cho
Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 ( Đây là bài của chịnhunglth đó ạ)
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố
Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p
Các bạn có thể trả lời vài câu hỏi cũng được.Bạn nào trả lời được nhiều mình sẽ ủng hộ cho nha