\(D=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
\(\Rightarrow D=\frac{1}{3\cdot6}+\frac{1}{6\cdot9}+\frac{1}{9\cdot12}+...+\frac{1}{30\cdot33}\)
\(\Rightarrow D=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\right)\)
\(\Rightarrow D=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{33}\right)=\frac{1}{3}\cdot\frac{10}{33}=\frac{10}{99}\)
D=\(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
= \(\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+...+\frac{1}{30.33}\)
=\(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\)
=\(\frac{1}{3}-\frac{1}{33}\)
=\(\frac{10}{33}\)