18a
\(\dfrac{x^2-x}{xy}+\dfrac{1-4x}{xy}=\dfrac{x^2-x+1-4x}{xy}=\dfrac{x^2-5x+1}{xy}\)
b,
\(\dfrac{5xy^2-x^2y}{3xy}+\dfrac{4xy^2+x^2y}{3xy}=\dfrac{5xy^2-x^2y+4xy^2+x^2y}{3xy}\\ =\dfrac{9xy^2}{3xy}=3y\)
c,
\(\dfrac{2x^2-xy}{x-y}+\dfrac{xy+y^2}{y-x}+\dfrac{2y^2-x^2}{x-y}\\ =\dfrac{2x^2-xy-xy-y^2+2y^2-x^2}{x-y}=\dfrac{x^2-2xy+y^2}{x-y}\\ =\dfrac{\left(x-y\right)\left(x-y\right)}{x-y}=x-y\)
