Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
minhduc

 

Bài 11:Cho các số a,b,c không âm không đồng thời bằng không. Chứng minh rằng;

∑2a2−bcb2−bc+c2≥3

Bài 8:

Cho các số thực a,b,c,x,y thỏa mãn ax−by=√3ax−by=3.

Tìm GTNN của F=a2+b2+x2+y2+bx+ay

minhduc
26 tháng 10 2017 lúc 18:24

Bài 8:

Cho các số thực a,b,c,x,y thỏa mãn ax−by=√3ax−by=3.

Tìm GTNN của F=a2+b2+x2+y2+bx+ayF=a2+b2+x2+y2+bx+ay

Lời giải:

Sử dụng giả thiết ax−by=√3ax−by=3 ta có:

(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3

Áp dụng bất đẳng thức CauchyCauchy , suy ra:

a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2√(a2+b2)(x2+y2)=2√(ax+by)2+3a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2(a2+b2)(x2+y2)=2(ax+by)2+3

Do đó, ta đưa về bài toán tìm GTNN của: 2√x2+3+x2x2+3+x trong đó x=ax+byx=ax+by

Ta có:

(2√x2+3+x)2=4(x2+3)+4x√x2+3+x2=(x2+3)+4x√x2+3+4x2+9=(√x2+3+2x)2+9≥9(2x2+3+x)2=4(x2+3)+4xx2+3+x2=(x2+3)+4xx2+3+4x2+9=(x2+3+2x)2+9≥9

⇒2√x2+3+x≥3⇒2x2+3+x≥3

Vậy MinT=3MinT=3

Bài 11:Cho các số a,b,c không âm không đồng thời bằng không. Chứng minh rằng;

∑2a2−bcb2−bc+c2≥3∑2a2−bcb2−bc+c2≥3

Không mất tính tổng quát, ta có thể giả sử bb là số nằm giữa aa và cc

BĐT đã cho tương đương với

∑2a2+(b−c)2b2−bc+c2≥6∑2a2+(b−c)2b2−bc+c2≥6

Áp dụng BĐT Cauchy-Schwarz, ta có

∑2a2b2−bc+c2≥2(a2+b2+c2)2∑a2(b2−bc+c2)=2(a2+b2+c2)22∑a2b2−abc∑a∑2a2b2−bc+c2≥2(a2+b2+c2)2∑a2(b2−bc+c2)=2(a2+b2+c2)22∑a2b2−abc∑a

∑(b−c)2b2−bc+c2≥[a(b−c)+b(a−c)+c(a−b)]22∑a2b2−abc∑a=4b2(a−c)22∑a2b2−abc∑a∑(b−c)2b2−bc+c2≥[a(b−c)+b(a−c)+c(a−b)]22∑a2b2−abc∑a=4b2(a−c)22∑a2b2−abc∑a

Do đó ta chỉ cần chứng minh

(a2+b2+c2)2+2b2(a−c)2≥6∑a2b2−3abc∑a(1)(a2+b2+c2)2+2b2(a−c)2≥6∑a2b2−3abc∑a(1)

Ta có 

b2(a−c)2=[a(b−c)+c(a−b)]2=a2(b−c)2+c2(a−b)2+2ac(a−b)(b−c)b2(a−c)2=[a(b−c)+c(a−b)]2=a2(b−c)2+c2(a−b)2+2ac(a−b)(b−c)

≥a2(b−c)2+c2(a−b)2≥a2(b−c)2+c2(a−b)2

Suy ra 

2b2(a−c)2≥a2(b−c)2+b2(c−a)2+c2(a−b)22b2(a−c)2≥a2(b−c)2+b2(c−a)2+c2(a−b)2

⇒VT(1)≥(∑a2)2+2∑a2b2−2abc∑a⇒VT(1)≥(∑a2)2+2∑a2b2−2abc∑a

Do đó ta chỉ còn phải chứng minh 

(∑a2)2+2∑a2b2−2abc∑a≥6∑a2b2−3abc∑a(∑a2)2+2∑a2b2−2abc∑a≥6∑a2b2−3abc∑a

⇔∑a4+abc∑a≥2∑a2b2⇔∑a4+abc∑a≥2∑a2b2

BĐT này hiển nhiên đúng theo BĐT Schur

∑a4+abc∑a≥∑ab(a2+b2)∑a4+abc∑a≥∑ab(a2+b2)

Và BĐT AM-GM

∑ab(a2+b2)≥2∑a2b2∑ab(a2+b2)≥2∑a2b2

Kết thúc chứng minh 

Đẳng thức xảy ra khi a=b=ca=b=c hoặc a=ba=b, c=0c=0 và các hoán vị.

Sakuraba Laura
26 tháng 10 2017 lúc 18:27

Bạn leminhduc tự hỏi tự trả lời à


Các câu hỏi tương tự
Trần Hùng
Xem chi tiết
Bảo Nguyễn Ngọc
Xem chi tiết
super idol
Xem chi tiết
Trương Ngọc Anh Tuấn
Xem chi tiết
Huy Dang Quang
Xem chi tiết
Tạ Uyên
Xem chi tiết
Hoàng Hưng Đạo
Xem chi tiết
Nguyễn Huỳnh Quốc Việt
Xem chi tiết
Nguyễn Tuấn Anh
Xem chi tiết