cho x;y dương thỏa mãn x+y=6 tìm MIN của P=\(3x+2y+\frac{6}{x}+\frac{8}{y}\)
Cho x ; y ; z > 0 thỏa mãn \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=6\)
Tìm \(P_{max}=\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\)
Câu 1 cho x,y>0 thỏa mãn xy=6 tìm min Q=2/x+3/y+6/3x+2y
Câu 2 cho x,y là các số thực dương thỏa mãn x+y<=1 tìm min P=(1/x+1/y)nhân với căn (1+x^2y^2)
Bạn nào giúp mình nhanh với mình đang cần gấp T.T
cho x>0, y>0 và x+y\(\ge6\)
tìm Min của: A=\(3x+2y+\frac{6}{x}+\frac{8}{y}\)
Cho x , y , z > 0 thỏa mãn : x + 2y + 3z = 3
Tìm min \(\frac{x}{1+4y^2}+\frac{2y}{1+9z^2}+\frac{3z}{1+x^2}\)
Cho x,y,z>0 thỏa mãn xyz=1. Tìm min \(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
Cho \(x,y,z>0\) thỏa mãn \(x^2y+y^2z+z^2x=3\) tìm Min \(P=\frac{x^5y}{x^2+1}+\frac{y^5z}{y^2+1}+\frac{z^5x}{z^2+1}\)
a. cho 2 số dương x,y thỏa man x: x+y=1
tìm min của bt : \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
b, cho x,y,z là các số dương thỏa mãn \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=6\)
cmr : \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)
cho x+y+z=6;x,y,z>0.Min\(G=\frac{x^2}{x+2y+3z}+\frac{y^2}{y+2z+3x}+\frac{z^2}{z+2x+3y}\)