Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
NTT gammer

Bài 1: Tính B = 1 + 2 + 3 + ... + 98 + 99

Bài 2. Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)

Nguyễn Thị Anh Thư
3 tháng 10 2018 lúc 12:37

bài 1:

B = 1 + (2 + 3 + 4 + ... + 98 + 99).

Ta thấy tổng trong ngoặc gồm 98 số hạng, nếu chia thành các cặp ta có 49 cặp nên tổng đó là:

(2 + 99) + (3 + 98) + ... + (51 + 50) = 49.101 = 4949

Khi đó B = 1 + 4949 = 4950

bài 2:

Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó: 

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a= 1.2.3 - 0.1.2
      a2 = 2.3 → 3a2 = 2.3.3 → 3a= 2.3.4 - 1.2.3
      a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
      …………………..
      an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
      an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)

Bài 1: Tính B = 1 + 2 + 3 + ... + 98 + 99

=> B= \((99+1).99:2=4950\)

Vậy .....

Bài 2. Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)

=> 3A= 1.2.3+2.3.3+3.4.3+....+n.(n+1).3

=> 3A= 1.2.3+2.3.(4-1)+3.4.(5-2)+....+n.(n+1).\([\left(n+3\right).\left(n-1\right)]\)

=>3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+n.(n+1).(n+3)-(n-1) .n.(n+1)

=>3A=n.(n+1).(n+3)

=>A=\(\frac{n.\left(n+1\right).\left(n+3\right)}{3}\)

Vậy ...

Chúc bạn hok tốt

Khách vãng lai đã xóa

Các câu hỏi tương tự
Phan Minh Sang
Xem chi tiết
Thắng Nguyễn
Xem chi tiết
Nguyễn Thị Mỹ Linh
Xem chi tiết
Phùng Thị Vân Anh
Xem chi tiết
Nguyễn Việt Anh
Xem chi tiết
TH
Xem chi tiết
Đoàn phương mai
Xem chi tiết
Nguyễn Ngọc Lam Giang
Xem chi tiết
Ngọc Nguyễn Lê Lam
Xem chi tiết