a)Có \(\left(x-2\right)^2\ge0;\left(y-3\right)^2=0\)
Mà \(\left(x-2\right)^2+\left(y-3\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\y-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}}\)
b)\(\left(x-1\right)^{x+2}=0\)
\(\Rightarrow x-1=0\Leftrightarrow x=1\)
a) \(\left(x-2\right)^2+\left(y-3\right)^2=0\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\left(y-3\right)^2\ge0\forall y\)
\(\Rightarrow\)\(\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x-2=0\\y-3=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
b) \(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+6}\)
\(\Rightarrow\left(x-1\right)^{x+2}-\left(x-1\right)^{x+6}=0\)
\(\left(x-1\right)^{x+2}\times1-\left(x-1\right)^{x+2}\times\left(x-1\right)^4=0\)
\(\left(x-1\right)^{x+2}\times[1-\left(x-1^4\right)]=0\)
TH 1: \(\left(x-1\right)^{x+2}=0\) TH 2: \(1-\left(x-1\right)^4=0\)
\(\Rightarrow x-1=0\) \(\left(x-1\right)^4=1\)
\(\Rightarrow x=1\) \(\Rightarrow\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}}\)
Vậy \(x\in[0;1;2]\)