Bài 1 :
Ta có :
\(A=2x^2-6x\)
\(=2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}\)
\(=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\)
Có : \(2\left(x-\frac{3}{2}\right)^2\ge0\)
\(\Rightarrow2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
\(\Rightarrow A_{min}=-\frac{9}{2}\Leftrightarrow x-\frac{3}{2}=0\)
\(\Leftrightarrow x=\frac{3}{2}\)
Vậy ...
Bài 2 :
\(A=4x-x^2-5=-\left(x^2-4x+4\right)-1\)
\(=-\left(x-2\right)^2-1\)
Bạn xem lại đề.
Với \(x=2\Rightarrow A=-1< 0\)