\(a\left(b+c\right)+3b+3c\)
\(\Rightarrow a\left(b+c\right)+3\left(b+c\right)\)
\(\Rightarrow\left(a+3\right)\left(b+c\right)\)
Ta có : a(b+c)+3b+3c=ab+ac+3b+3c=(ab+3b)+(ac+3c)=b(a+3)+c(a+3)=(a+3)(a+c)
\(a.\left(b+c\right)+3b+3c\)
\(=a.\left(b+c\right)+3.\left(b+c\right)\)
\(=\left(b+c\right).\left(a+3\right)\)