Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hữu Quang

bài 1: Phân tích đa thức thành nhân tử:

   a) (x^2+2x).(x^2+2x+4)+3

Nguyễn thành Đạt
24 tháng 9 2023 lúc 21:41

\(a)\left(x^2+2x\right)\left(x^2+2x+4\right)+3\)

Để đơn giản hơn cũng như là dễ nhìn hơn thì ta :

Đặt : \(x^2+2x=a\)

Do đó ta có đa thức :

\(a.\left(a+4\right)+3=a^2+4a+3\)

\(=a^2+a+3a+3\)

\(=a\left(a+1\right)+3\left(a+1\right)\)

\(=\left(a+1\right)\left(a+3\right)\)

\(=\left(x^2+2x+1\right)\left(x^2+2x+3\right)\)

\(=\left(x+1\right)^2.\left(x^2+2x+3\right)\)

 

Lê Song Phương
24 tháng 9 2023 lúc 21:48

Hoặc bạn có thể đặt \(x^2+2x+2=t\)

Thì \(P=\left(x^2+2x\right)\left(x^2+2x+4\right)+3\)

\(P=\left(t-2\right)\left(t+2\right)+3\)

\(P=t^2-4+3\)

\(P=t^2-1\)

\(P=\left(t-1\right)\left(t+1\right)\)

\(P=\left(x^2+2x+1\right)\left(x^2+2x+3\right)\)

\(P=\left(x+1\right)^2\left(x^2+2x+3\right)\)

Nguyễn Xuân Thành
24 tháng 9 2023 lúc 21:45

a) \(\left(x^2+2x\right).\left(x^2+2x+4\right)+3\)

\(=x^4+4x^3+4x^2+4x^3+16x^2+16x\)

\(=x^4+8x^3+20x^2+16x\)

\(=\left(x^4+8x^3+20x^2+16x\right)+3\)

\(=x^4+8x^3+20x^2+16x+3\)

 


Các câu hỏi tương tự
T.Huy
Xem chi tiết
Nhà Tiên Tri Vũ Trụ Đấng...
Xem chi tiết
Nguyễn Thị Thảo Ánh
Xem chi tiết
Yukino Ayama
Xem chi tiết
Tiến Hoàng Minh
Xem chi tiết
Kenny
Xem chi tiết
Hermione Granger
Xem chi tiết
kinokinalisa
Xem chi tiết
Phan An
Xem chi tiết