Bài 1:
\(\left(x+y\right)^3-\left(x-y\right)^3=\left(x+y-x+y\right)\left(\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right)\)
\(=2y\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)=2y\left(3x^2+y^2\right)\)
Bài 2:
\(\frac{4}{9}-25x^2=0\Leftrightarrow\left(\frac{2}{3}-5x\right)\left(\frac{2}{3}+5x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5x=\frac{2}{3}\\5x=-\frac{2}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{2}{15}\\x=-\frac{2}{15}\end{matrix}\right.\)
\(x^2-x+\frac{1}{4}=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
Bài 3:
\(A=17.91,5+17.8,5=17\left(91,5+8,5\right)=17.100=1700\)
\(B=\left(2016-16\right)\left(2016+16\right)=2000.2032=4064000\)
\(C=2001\left(2001-1\right)+2999\left(2001-1\right)\)
\(=2001.2000+2999.2000\)
\(=2000\left(2001+2999\right)\)
\(=2000.5000=10000000\)
Bài 1: Phân tích đa thức thành nhân tử:
a) (x + y)3 - (x - y)3
= ( x + y - x - y )[( x + y ) 2 - ( x + y )( x - y ) + ( x - y )2 ]
= 0 [( x + y ) 2 - ( x + y )( x - y ) + ( x - y )2 ]
= 0
Bài 2: Tìm x, biết:
a) \(\frac{4}{9}\) - 25x2 = 0
( \(\frac{2}{3}\))2 - ( 5x )2 = 0
( \(\frac{2}{3}\)+ 5x )( \(\frac{2}{3}\)- 5x ) = 0
\(\frac{2}{3}\)+ 5x = 0 ----> 5x = -\(\frac{2}{3}\) ---> x = -\(\frac{2}{15}\)
\(\frac{2}{3}\)- 5x = 0 --> 5x = \(\frac{2}{3}\) --> x = \(\frac{2}{15}\)
b) x2 - x + \(\frac{1}{4}\) = 0
x2 - 2. x . \(\frac{1}{2}\) + \(\left(\frac{1}{2}\right)\)2 = 0
( x - \(\frac{1}{2}\))2 = 0
x - \(\frac{1}{2}\) = 0
x = \(\frac{1}{2}\)
Bài 3: Tính nhanh giá trị các biểu thức sau:
a) 17.91,5 + 170.0,85
= 17.91,5 + 17.10.0,85
= 17.91,5 + 17.8,5
= 17 ( 91,5 + 8,5 )
= 170
b) 20162 - 162
= ( 2016 + 16 )( 2016 - 16 ).
= 2032.2000
= 4064000
c) x(x - 1) - y (1 - x) tại x = 2001 và y = 2999
x(x - 1) - y (1 - x)
= x(x - 1) + y ( x - 1 )
= ( x + y )( x - 1 )
Thay x = 2001 và y = 2999
( 2001 + 2999 )( 2001 - 1 )
= 5000. 2000
= 10000000