a: n lẻ nên n=2k+1
\(A=n^3+3n^2-n-3\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\left(n^2-1\right)=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)
\(=2k\left(2k+2\right)\left(2k+4\right)=2k\cdot2\left(k+1\right)\cdot2\left(k+2\right)=8k\left(k+1\right)\left(k+2\right)\)
Vì k;k+1;k+2 là ba số nguyên liên tiếp
nên k(k+1)(k+2)⋮3!=6
=>A=8k(k+1)(k+2)⋮8*6
=>A⋮48
c: n lẻ nên n=2k+1
\(C=n^4-10n^2+9\)
\(=n^4-n^2-9n^2+9\)
\(=\left(n^2-1\right)\left(n^2-9\right)=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)
=(2k+1-1)(2k+1+1)(2k+1-3)(2k+1+3)
\(=2k\cdot\left(2k+2\right)\left(2k-2\right)\left(2k+4\right)=16k\left(k+1\right)\left(k-1\right)\left(k+2\right)\)
Vì k-1;k;k+1;k+2 là bốn số nguyên liên tiếp
nên \(\left(k-1\right)\cdot k\cdot\left(k+1\right)\left(k+2\right)\) ⋮4!=24
=>C=16k(k+1)(k-1)(k+2)⋮16*24
=>C⋮384