Rút gọn biểu thức: A=\(\frac{\sqrt{5}+3}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
Tìm giá trị lớn nhất của biểu thức M=\(2x+\sqrt{5-x^2}\)
Cho x;y là các số thực thỏa mãn \(x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\).Tính N=\(x^2+y^2\)
Giúp mình nhanh với...mai sắp tạch rồi
cho biểu thức M=\(\frac{x^2+5x+6+x\sqrt{9-x^2}}{3x-x^2+\left(x+2\right)\sqrt{9-x^2}}\) : \(2\sqrt{1+\frac{2x}{3-x}}\)
rút gọn M
Cho A =\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\) và B=\(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\)
a) tính giả trị của A khi X=\(4-2\sqrt{3}\)
b) rút gọn P=B:A
c) tìm min P
BÀI 2
cho A =\(\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{\sqrt{x}+2}{\sqrt{x}-2}-\frac{2x+8}{x-4}\)và B=\(\frac{2}{\sqrt{x}-6}\)
a) tính giá trị của B khi X=25
b) rút gọn A
c) tìm min P=A:B
1. Cho các số \(a,b,c\)dương thỏa mãn \(ab+ac+bc=1\)
CMR : P= \(\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\le\frac{9}{4}\)
2. Cho x,y,z là các số thực dương thỏa mãn xyz=1
Tìm GTLN của biểu thức \(A=\frac{1}{x^3+y^3+1}+\frac{1}{z^3+y^3+1}+\frac{1}{z^3+x^3+1}\)
3. Giải pt
a) \(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
b)\(CM:\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)
c) Cho đường thẳng y= (m-2)x + 2 (d). CMR đg thẳng (d) luôn đi qua 1 điểm cố định với mọi giá trị của m
4. Cho x,y là các số dương
a) CM \(\frac{x}{y}+\frac{y}{x}\ge2\)
b) Tìm Min M = \(\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}\)
cho x,y,z là các số thực không âm thỏa mãn x+y+z=1.Tìm min
\(T=\left[\frac{\sqrt[3]{x+y+2z}\left(\sqrt{xy+z}+\sqrt{2x^2+2y^2}\right)}{3\sqrt[6]{xy}}\right]\left(x^2+y^2+z^2\right)-2\sqrt{2x^2-2x+1}\)
Bài 2 : Cho \(A=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)
a, Rút gọn A
b, Tìm A khi x = 9
c, Tìm các giá trị của x thỏa mãn : \(\sqrt{x}.A=6\sqrt{x}+3\)
Bài Toán :
Cho P = \(\left(1-\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{9-x}{x+\sqrt{x}-6}-\frac{\sqrt{x}-3}{2-\sqrt{x}}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
a) Rút gọn P
b) Tìm x để P > 0
c) Tìm Min của Q = P.(x + 1)
Cho x,y là các số thực dương thỏa mãn x+y=4. Tìm min
M=\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}\)
Cho x,y,z là 3 số thực dương thõa mãn x+y+z\(\le\frac{3}{2}\). Tìm Min A=\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\)