bài 1 :Cho điểm M thuộc nửa đường tròn đường kính AB (M khác A và B). Lấy điểm I nằm giữa M và B, kẻ IH vuông góc với AB tại H. Đoạn thẳng AI cắt đoạn thẳng MH tại K. Chứng minh rằng
bài 2 : Cho đường tròn (O), từ điểm A nằm ngoài đường tròn kẻ hai tiếp tuyến AB và AC (B, C là hai tiếp điểm). Gọi M là giao điểm của OA và BC, D là một điểm nằm trên đường tròn (O) sao cho D không nằm trên đường thẳng OA, kẻ dây cung DE đi qua M. Chứng minh tứ giác ADOE nội tiếp.
Bài 1 thiếu đề
Bài 2 Mình không vẽ được hình nên bạn thông cảm
Xét tam giác vuông ACO có \(CM\perp AO\)
=> \(OM.OA=OC^2=OD^2\)
=> \(\frac{OD}{OA}=\frac{OM}{OD}\)
=> tam giác MDO đồng dạng tam giác DAO
=> MDO=OAD
Mà MDO=DEO
=> OAD=DEO
=> tứ giác ADOE nội tiếp
Vậy tứ giác ADOE nội tiếp
cảm ơn bạn nhìu nhé b1 đủ đề đó ko thiếu đâu
à mình quên b1 thiếu , đầy đủ đây nhá bạn giúp mình : Cho điểm M thuộc nửa đường tròn có đường kính AB (M khác A và B). Ta lấy điểm I nằm giữa M và B, kẻ IH vuông góc với cạnh AB tại H. Đoạn thẳng AI cắt đoạn thẳng MH tại điểm K. Chứng minh góc B + góc AKM = 2 góc AIM
Bài 1 Bạn dùng quy tắc góc ngoài của tam giác là được