bài 1: Cho \(a+b+c=0\)Chứng minh đẳng thức
\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)
Bài 2: Cho \(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+....+\frac{1}{\sqrt{2005}+\sqrt{2006}}\)
\(B=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2005}}\)
a, Rút gọ A
b, Chứng minh \(B>2\left(\sqrt{2006}-1\right)\)
Giúp mk vs ạ !!! Cô cho bài về để ôn thi học kì mà ko pic lm nà :((( !!!
1/ \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=0\)
\(\Leftrightarrow\frac{a+b+c}{abc}=0\)(đúng)
Vậy ta có ĐPCM
2/ \(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2005}+\sqrt{2006}}\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2006}-\sqrt{2005}\)
\(=\sqrt{2006}-1\)
b/ Ta có
\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}\)
\(=2\left(\sqrt{n+1}-\sqrt{n}\right)\)
Áp dụng vài bài toán ta có
\(B=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{2005}}\)
\(>2.\sqrt{2}-2.\sqrt{1}+2.\sqrt{3}-2.\sqrt{2}+...+2.\sqrt{2006}-2.\sqrt{2005}\)
\(=2.\sqrt{2006}-2=2\left(\sqrt{2006}-1\right)\)