Bài 1: Cho △ABC cân tại C. Gọi D, E lần lượt là trung điểm của các cạnh AC, BC. Các đường thẳng AE, BD cắt nhau tại M. Các đường thẳng CM, AB cắt nhau tại I.
a) Chứng minh AE = BD
b) Chứng minh DE // AB
c) Chứng minh IM ⊥ AB. Từ đó tính IM trong trường hợp BC = 15cm, AB = 24cm
d) Chứng minh AB + 2BC > CI + 2AE
a: Ta có: \(CD=DA=\dfrac{CA}{2}\)
\(CE=EB=\dfrac{CB}{2}\)
mà CA=CB
nên CD=DA=CE=EB
Xét ΔCEA và ΔCDB có
CE=CD
\(\widehat{DCB}\) chung
CA=CB
Do đó: ΔCEA=ΔCDB
Suy ra: AE=BD
b: Xét ΔCAB có
\(\dfrac{CD}{CA}=\dfrac{CE}{CB}\left(=\dfrac{1}{2}\right)\)
Do đó: DE//AB