bài 1
\(A+B=a+b-5-b-c+1=a-c-4\)
\(A+B+C+D=a-c-4+b-c-4+b-a=2b-2c\)
\(A-B+C-D=a+b-5+b+c-1+b-c-4+a-b\)
\(A-B+C-D=2a+2b-10\)
\(A+B=a-c-4\)
\(C-D=b-c-4-b+a=a-c-4\)
\(A+B=C-D\)
Bài 2
\(M>N\)
\(M-N>0\)
\(a+b-1+b+c-1=a+c-2>0\)
\(a+c>2\)
bài 1
\(A+B=a+b-5-b-c+1=a-c-4\)
\(A+B+C+D=a-c-4+b-c-4+b-a=2b-2c\)
\(A-B+C-D=a+b-5+b+c-1+b-c-4+a-b\)
\(A-B+C-D=2a+2b-10\)
\(A+B=a-c-4\)
\(C-D=b-c-4-b+a=a-c-4\)
\(A+B=C-D\)
Bài 2
\(M>N\)
\(M-N>0\)
\(a+b-1+b+c-1=a+c-2>0\)
\(a+c>2\)
15.
Cho a, b, c là các số thực dương thỏa mãn \(a+b+c+ab+bc+ac=6\)
Chứng minh rằng: \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge3\)
16.
Xét các số thực a, b, c ( a khác 0) sao cho:
Phương trình bậc hai \(ax^2+bx+c=0\) có hai nghiệm m, n thỏa mãn: \(0\le m\le1;0\le n\le1\).
Tìm giá trị nhỏ nhất của biểu thức: \(Q=\dfrac{2a^2-ac-2ab+bc}{a^2-ab+ac}\)
17.
Cho ba số thực không âm a, b, c và thỏa amnx a+b+c=1.
Chứng minh rằng: \(a+2b+c\ge4\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
18.
Cho ba số thực a, b, c. Chứng minh rằng:
\(\left(a^2-bc\right)^3+\left(b^2-ca\right)^3+\left(c^2-ab\right)^3\ge3\left(a^2-bc\right)\left(b^2-ca\right)\left(c^2-ab\right)\)
Trong không gian với hệ tọa độ Oxyz, cho các điểm A a ; 0 ; 0 , B 0 ; b ; 0 , C 0 ; 0 ; c với a,b,c dương. Biết A, B, C di động trên các tia O x , O y , O z sao cho a + b + c = 2 . Biết rằng khi a,b,c thay đổi thì quỹ tích tâm hình cầu ngoại tiếp tứ diện OABC thuộc mặt phẳng (P) cố định. Tính khoảng cách từ M 2016 ; 0 ; 0 tới mặt phẳng (P).
A. 2017
B. 2014 3 .
C. 2016 3 .
D. 2015 3 .
Trong không gian với hệ tọa độ Oxyz, cho A a ; 0 ; 0 , B 0 ; b ; 0 , C 0 ; 0 ; c với a,b,c dương. Biết A, B, C di động trên các tia Ox, Oy, Oz sao cho a + b + c = 2 . Biết rằng khi a,b,c thay đổi thì quỹ tích tâm hình cầu ngoại tiếp tứ diện OABC thuộc mặt phẳng (P) cố định. Tính khoảng cách từ M 2017 ; 0 ; 0 tới mặt phẳng (P).
A. 2017 3
B. 2016 3
C. 2017
D. 2016
Trong ba số nguyên a , b , c . Có một số nguyên dương và hai số nguyên âm. Hỏi số nào dương số nào âm? a) a. c = ( -b )^2006 b) a. b = |c|
Chứng minh \(\dfrac{1}{2+a}+\dfrac{1}{2+b}+\dfrac{1}{2+c}\le1\)
10. Cho a, b, c là các số thực dương. Chứng minh rằng:\(\dfrac{a}{b}+\dfrac{b}{c}\ge\dfrac{4a}{a+c}\)
11.Cho các số thực dương a, b, c. Chứng minh rằng:
\(\dfrac{ab}{a+b+2c}+\dfrac{bc}{b+c+2a}+\dfrac{ca}{a+c+2b}\le\dfrac{1}{4}\left(a+b+c\right)\)
Cho hàm số y = x 3 - 3 x + 2 C . Biết rằng đường thẳng d : y = m x + 1 cắt C tại ba điểm phân biệt A, B, C. Tiếp tuyến tại ba điểm A, B, C của đồ thị cắt đồ thị C lần lượt tại các điểm A', B', C'(tương ứng khác A, B, C). Biết rằng A', B', C' thẳng hàng, tìm giá trị của tham số m để đường thẳng đi qua ba điểm A', B', C' vuông góc với đường thẳng ∆ : x + 2018 y - 2019 = 0
A. m = 1009 2
B. m = 1009 4
C. m = 2009 4
D. m = 2019 4
Trong không gian với hệ tọa độ Oxyz, cho A(a; 0; 0), B(0; b; 0), C(0; 0; c) với a, b, c dương. Biết A, B, C di động trên các tia Ox, Oy, Oz sao cho a + b + c = 2. Biết rằng khi a, b, c thay đổi thì quỹ tích tâm hình cầu ngoại tiếp tứ diện OABC thuộc mặt phẳng (P) cố định. Tính khoảng cách từ M(2016; 0; 0) tới mặt phẳng (P).
A. 2017
B. 2014 3
C. 2016 3
D. 2015 3
Cho ∫ 1 2 1 + x 2 x 4 d x = 1 c ( a a - b b b + c ) Tính a+b+c
A. T=10
B. T=15
C. T=25
D. T=13
1)Cho a,b,c là các số thực thỏa mãn: a+b+c=2015 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2015}\).Tính \(\frac{1}{a^{2015}}+\frac{1}{b^{2015}}+\frac{1}{c^{2015}}\)
2)Cho n là số dương.Chứng minh:
T= \(2^{3n+1}-2^{3n-1}+1\) là hợp số.
3)Cho a,b,c là ba số dương và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\).Tìm Max A=\(\frac{1}{\sqrt{a^2-ab+b^2}}+\frac{1}{\sqrt{b^2-bc+c^2}}+\frac{1}{\sqrt{c^2-ac+a^2}}\)