\(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\\ =\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left[-\left(a^2-b^2\right)-\left(c^2-a^2\right)\right]+\left(c+a\right)\left(c^2-a^2\right)\\ =\left(a+b\right)\left(a^2-b^2\right)-\left(b+c\right)\left(a^2-b^2\right)-\left(b+c\right)\left(c^2-a^2\right)+\left(c+a\right)\left(c^2-a^2\right)\\ =\left(a^2-b^2\right)\left(a-c\right)-\left(c^2-a^2\right)\left(a-b\right)\\ =\left(a-b\right)\left(a+b\right)\left(a-c\right)-\left(a+c\right)\left(c-a\right)\left(a-b\right)\\ =\left(a+b\right)\left(a-c\right)\left(a+b-a-c\right)\\ =\left(a+b\right)\left(a-c\right)\left(b-c\right)\)
\(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)+2abc\\ =ab^2+ac^2+bc^2+a^2b+c\left(a^2+2ab+b^2\right)\\ =ab\left(a+b\right)+c^2\left(a+b\right)+c\left(a+b\right)^2\\ =\left(a+b\right)\left(ab+c^2+ac+cb\right)\\ =\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)+2abc
=ab^2+ac^2+bc^2+a^2b+c(a^2+2ab+b^2)
=ab(a+b)+c^2(a+b)+c(a+b)^2
=(a+b)(ab+c^2+ac+cb)
=(a+b)(b+c)(a+c)