65. Phân tích đa thức thành nhân tử
a) \(ab\left(a+b\right)-bc\left(b+c\right)+ac\left(a-c\right)\)
b) \(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)+2abc\)
c) \(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)
d) \(a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)
e) \(a^3\left(c-b^2\right)+b^3\left(a-c^2\right)+c^3\left(b-a^2\right)+abc\left(abc-1\right)\)
phân tích đa thức thành nhân tử
a, \(ab\left(a+b\right)-bc\left(b+c\right)+ac\left(a-c\right)\)
b, \(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)
c, \(a^3\left(c-b^2\right)+b^3\left(a-c^2\right)+c^3\left(b-a^2\right)+abc\left(abc-1\right)\)
Phân tích đa thức sau thành nhân tử:
a) \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
b) \(a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)
c) \(a^4\left(b-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)
d) \(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)
e) \(a.\left(b+c\right)^2\left(b-c\right)+b\left(c+a\right)^2\left(c-a\right)+c^2\left(a+b\right)^2.\left(a-b\right)\)
Cho a-b+c=-4. Tính B = \(\dfrac{a^3-b^3+c^3+3abc}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)
64. Phân tích đa thức thành nhân tử
a)\(a\left(b^2+c^2+bc\right)+b\left(c^2+a^2+ac\right)+c\left(a^2+b^2+bc\right)\)
b) \(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
c) \(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)
Phân tích đa thức thành nhân tử :
\(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)+2abc\)
\(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)
\(a^3\left(c-b^2\right)+b^3\left(a-c^2\right)+c^3\left(b-a^2\right)+abc\left(abc-1\right)\)
Phân tích đa thức thành nhân tử:
1) \(a^4+b^4+c^4-2a^2b^2-2a^2c^2-2b^2c^2\)
2)\(a\left(b^2+c^2+bc\right)+b\left(c^2+a^2+ac\right)+c\left(a^2+b^2+ab\right)\)
3) \(\left(x+y\right)\left(x^2-y^2\right)+\left(y+z\right)\left(y^2-z^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)
Cho a + b + c + d = 0. Tính \(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right);N=\dfrac{1}{b^2+c^2-a^2}+\dfrac{1}{a^2+c^2-b^2}+\dfrac{1}{a^2+b^2-c^2}\)
Phân tích các đa thức sau thành nhân tử:
* \(x^3-7x+6\)
* \(x^3-9x^2+6x+16\)
* \(x^3-6x^2-x+30\)
* \(2x^3-x^2+5x+3\)
* \(27x^3-27x^2+18x-4\)
* \(x^2+2xy+y^2-x-y-12\)
* \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
* \(4x^4-32x^2+1\)
* \(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\)
* \(64x^4+y^4\)
* \(a^6+a^4+a^2b^2+b^4-b^6\)
* \(x^3+3xy+y^3-1\)
* \(4x^4+4x^3+5x^2+2x+1\)
* \(x^8+x+1\)
* \(x^8+3x^4+4\)
* \(3x^2+22xy+11x+37y+7y^2+10\)
* \(x^4-8x+63\)
* \(\left(x+y+z\right)\left(xy+yz+zx\right)-xyz\)
* \(xy\left(x+y\right)-yz\left(y+z\right)+xz\left(x-z\right)\)
* \(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)
* \(a^4\left(b-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)
* \(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab^2+c^3-3abc\)
* \(\left(a+b+c\right)^3-a^3-b^3-c^3=[\left(a+b\right)c]^3-a^3-b^3-c^3\)
* \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
\([\) Các bạn làm được bài nài thì làm giúp mk với nha,làm vài câu cũng được\(]\)
Mk mệt quá rồi làm giúp mk với nha