Một hình hộp chữ nhật có độ dài ba cạnh cùng xuất phát từ một đỉnh lần lượt là 2, 3, 4. Khi đó thể tích của hình hộp chữ nhật đó là:
A. 12.
B. 24.
C. 8.
D. 4.
Cho khối hộp chữ nhật ABCD.A'B'C'D'. Gọi M là trung điểm của BB'. Mặt phẳng (MDC') chia khối hộp chữ nhật thành hai khối đa diện, một khối chứa đỉnh C và một khối chứa đỉnh A'. Gọi V 1 , V 2 lần lượt là thể tích hai khối đa diện chứa C và A'. Tính V 1 V 2 .
Khối hộp chữ nhật có 3 cạnh xuất phát từ một đỉnh lần lượt có độ dài a, b, c. Thể tích khối hộp chữ nhật là ?
A. 1 3 a b c
B. abc.
C. 1 6 a b c
D. 4 3 a b c
Cho hình hộp chữ nhật ABCD. A’B’C’D’ có diện tích các mặt ABCD, BCC’B’, CDD’C’ lần lượt là 2 a 2 , 3 a 2 , 6 a 2 . Tính thể tích khối hộp chữ nhật ABCD. A’B’C’D’
A. 36 a 3
B. 6 a 3
C. 36 a 6
D. 6 a 2
Một hình hộp chữ nhật có ba kích thước là a, b, c nội tiếp một mặt cầu. Khi đó diện tích Smc của mặt cầu đó là
Gọi a, b, c lần lượt là ba kích thước của một khối hộp chữ nhật (H) và V là thể tích của khối hộp chữ nhật (H). Khi đó V được tính bởi công thức:
Cho hình hộp chữ nhật có độ dài đường chéo của các mặt lần lượt là 5 , 10 , 13 . Tính thể tích của hình hộp đã cho.
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có các kích thước là AB= 2, AD= 3, AA’= 4. Gọi (N) là hình nón có đỉnh là tâm của mặt ABB’A’ và đường tròn đáy là đường tròn ngoại tiếp hình chữ nhật CDD’C’. Tính thể tích V của hình nón (N).
A. 13 3 π
B. 5 π
C. 8 π
D. 25 6 π
Nếu một khối hộp chữ nhật có độ dài các đường chéo của các mặt lần lượt là 5 ; 10 , 13 thì thể tích khối hộp chữ nhật đó bằng:
A. 6
B. 5
C. 4
D. 8