Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

B=2 mũ 1 + 2 mũ 2 + 2 mũ 3 + .... +2 mũ 30 chứng minh rằng B chia hết cko 21

Tran Le Khanh Linh
29 tháng 2 2020 lúc 18:55

Ta có: 21=3 x 7 vì 3 và 7 là 2 số nguyên tố cùng nhau

\(B=2+2^2+2^3+....+2^{30}\)

\(\Rightarrow B=\left(2+2^2\right)+\left(2^3+2^4\right)+....+\left(2^{29}+2^{30}\right)\)

\(\Rightarrow B=2\left(1+2\right)+2^3\left(1+2\right)+....+2^{29}\left(1+2\right)\)

\(\Rightarrow B=2\cdot3+2^3\cdot3+....+2^{29}\cdot3\)

\(\Rightarrow B=3\left(2+2^3+...+2^{29}\right)\)

\(\Rightarrow B⋮3\left(1\right)\)

\(B=2+2^2+2^3+....+2^{30}\)

\(\Rightarrow B=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{28}+2^{29}+2^{30}\right)\)

\(\Rightarrow B=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+....+2^{28}\left(1+2+2^2\right)\)

\(\Rightarrow B=2\cdot7+2^4\cdot7+...+2^{28}\cdot7\)

\(\Rightarrow B=7\left(2+2^4+....+2^{28}\right)\)

\(\Rightarrow B⋮7\left(2\right)\)

(1) (2) => B chia hết cho 21 (đpcm)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Xem chi tiết
Xem chi tiết
Xem chi tiết
Xem chi tiết
Xem chi tiết
Xem chi tiết
Xem chi tiết
Luu Phuong Mai
Xem chi tiết
Hồng Nguyễn Thị
Xem chi tiết