\(B=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2014}}\)
\(5B=5\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2014}}\right)\)
\(5B=1+\frac{1}{5}+...+\frac{1}{5^{2013}}\)
\(5B-B=\left(1+\frac{1}{5}+...+\frac{1}{5^{2013}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2014}}\right)\)
\(4B=1-\frac{1}{5^{2014}}\Rightarrow B=\frac{1-\frac{1}{5^{2014}}}{4}\)
Ta có: \(1-\frac{1}{5^{2014}}< 1\Rightarrow\frac{1-\frac{1}{5^{2014}}}{4}< \frac{1}{4}\)
\(\Rightarrow B< \frac{1}{4}\)(Đpcm)