Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bùi Hồng Ngọc

B1 cho a+b+c=0. Cm

A^3 + b^3+ a^2b+ b^2c -abc=0

B2. Tìm nghiệm

X+xy+y+2=0

X+y=xy

X^2+21= y^2

Yukru
20 tháng 7 2018 lúc 9:38

B1/ Sửa đề chút nha, bạn ghi sai đề rồi. Đề đúng là như này

\(a^3+b^3+a^2c+b^2c-abc\)

\(=a^3+a^2c+a^2b-a^2b-abc+b^2c+b^3+b^2a-b^2a\)

\(=\left(a^3+a^2b+a^2c\right)+\left(b^2c+b^2a+b^3\right)-\left(a^2b+abc+b^2a\right)\)

\(=a^2\left(a+b+c\right)+b^2\left(a+b+c\right)-ab\left(a+b+c\right)\)

Thay a + b +c = 0 vào ta được

\(a^2\left(a+b+c\right)+b^2\left(a+b+c\right)-ab\left(a+b+c\right)\)

\(=a^2.0+b^2.0-ab.0\)

\(=0\)

Vậy với a + b + c = 0 thì a3 + b3 + a2c + b2c - abc = 0

B2/
a) \(x+xy+y+2=0\)

\(\Leftrightarrow x\left(1+y\right)=-\left(y+2\right)\left(1\right)\)

Nếu y = -1 => 0 = -1 ( Loại )

Nếu y ≠ -1 thì (*)↔ x = - [(y + 1) + 1]/(y + 1)
hay x = - 1 - 1/(y+1)

Để x nguyên thì 1/(y+1) phải nguyên →y = 0 hay y =-2(y+1) là Ư(1) = {- 1 , 1}

y = 0 => x = - 2

y =-2 => x = 0
Nghiệm nguyên của phương trình là :
(x; y)∈ { ( -2; 0) , ( 0; -2) }

b) x+y = xy

<=> x(y-1) = y

<=> x = y/(y-1)= 1+1/(y-1)

Vì x là số nguyên nên 1/(y-1) là số nguyên

=> 1 chia hết cho y-1

=> y-1 là ước của 1

=> y-1=1 hoặc y-1=-1

=> y=2 hoặc y=0

Với y=2 => x=2

Với y=0=> x=0

Nghiệm nguyên phương trình là:

(x; y)∈ { ( 2; 2) , ( 0; 0) }

Bùi Hồng Ngọc
21 tháng 7 2018 lúc 14:56

k bn ah, đề 1 cô giáo mk cho đó

khó wa giúp mk nhá, t3 cần òy


Các câu hỏi tương tự
ytr
Xem chi tiết
ytr
Xem chi tiết
vietdat vietdat
Xem chi tiết
Phúc Nguyễn
Xem chi tiết
erza sarlet
Xem chi tiết
Nhi Lê
Xem chi tiết
Ngân Ngô Việt
Xem chi tiết
Kim Tae-hyung
Xem chi tiết
Nguyễn Hương Giang
Xem chi tiết