a: BC=15cm
\(AH=\dfrac{AB\cdot AC}{BC}=7,2\left(cm\right)\)
b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
a: BC=15cm
\(AH=\dfrac{AB\cdot AC}{BC}=7,2\left(cm\right)\)
b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
cho tam giác ABC vuông tại a đường cao ah cạnh ab=9cm ,ac=12cm a,chứng minh tam giác ABC đồng dạng với tam giác HBA b,tính độ dài đoạn thẳng BC,HB
Cho tam giác ABC (góc A=90⁰), đường cao Ah, Ab=9cm, Ac=12cm. a) Chứng minh tam giác HBA đồng dạng với tam giác ABC b) Tính HA,HB, diện tích tam giác HBA c) Kẻ đường phân giác HK,HI của góc AHB, góc AHC, chứng minh HI song song BC
Cho tam giác ABC vuông tại A có cạnh AB = 21cm, AC = 28cm, vẽ đường cao AH.
a/ Chứng minh tam giác ABC đồng dạng tam giác HBA. Tính độ dài AH
b/ Chứng minh AH bình phương = HB.HC
c/ Trên cạnh AC và cạnh AB lấy điểm M và N sao cho CM = 1/3 AC, AN = 1/3 AB. Chứng minh góc CMH = góc ANH
cho tam giác ABC vuông tại A có :AB=6cm,AC=9cm,đường cao AH
a,Chứng minh :tam giác ABC đồng dạng với tam giác HBA
b,Tính HB,HC
c,Đường phân giác góc B cắt AH tại I.Chứng minh :AI/AH=5/8
cho tam giác ABC vuông tại A đường cao ah .chứng minh tam giác HBA đồng dạng với tam giác ABC , chứng minh AH^2 = HB×HC ,tia phân giác góc AHC cắt AC tại d chứng minh HB/HC = AB^2/DC^2 , khi c bằng 45° và AB =6cm tính độ dài HD
Cho ∆ABC vuông tại A có AB=3cm;AC=4cm.Kẻ đường cao AH a) Chứng minh:∆ABC và ∆HBA đồng dạng với nhau b) Tính độ dài các cạnh BC,AH. c) Chứng minh AC^2 = HC.BC
AI GIÚP MÌNH CÂU NÀY VỚI Ạ, MÌNH CẦN GẮP LẮM
CÂU 1. CHO TAM GIÁC ABC VUÔNG TẠI A, ĐƯỜNG CAO AH, HD LÀ PHÂN GIÁC CỦA GÓC AHC. a) CHỨNG MINH TAM GIÁC ABC ĐỒNG DẠNG VỚI TAM GIÁC HAC
b) CHỨNG MINH AB × DC = AD × AC
CÂU 2. CHO TAM GIÁC ABC CÓ 3 GÓC NHỌN, ĐƯỜNG CAO AH. VẼ HD VUÔNG GÓC VỚI AB TẠI D, HE VUÔNG GÓC VỚI AC TẠI E
a) CHỨNG MINH: TAM GIÁC AHB ĐỒNG DẠNG TAM GIÁC ADH, AH × AH = AD × AB
b) CHỨNG MINH: AD × AB = AE × AC
c) CHỨNG MINH TAM GIÁC ADE ĐỒNG DẠNG VỚI TG ACB
d) ĐƯỜNG PHÂN GIÁC GÓC AHB CẮT AB TẠI M. CM: MB = 2/5 AB VÀ TÍNH BD/DA
cho tam giác ABC vuông tại A,đường cao AH.Đường phân giác của góc ABC cắt AC tại D và cắt AH tại E a,CM:tam giác ABC đồng dạng với tam giác HBA và AB bình=BC.BH b,Biết AB=9cm,BC=15cm.Tính DC và AD
Cho tam giác vuông ABC vuông tại A có AB=6cm,AC=8cm. Kẻ đường cao AH. a) Chứng minh tam giác ABC đồng dạng với tam giác HBA b) Tính diện tích tam giác hba biết tỉ số đồng dạng của tam giác ABC và HBA là\(\dfrac{5}{3}\)