dang tong quat cua so tu nhien chia het cho 3 la
a,3k (k ϵ n) b,5k + 3 (k ϵ n)
c,3k +1 (k ϵ n) d,3k+2(k ϵ n)
cho số nguyên dương k với k!=1.2.3....k . cho số nguyên n>3. cmr : kn=1!+2!+3!+...+n! không thể viết dưới dạng a^b với a; b là các số nguyên ; b>1
cho số nguyên dương k với k!=1.2.3....k . cho số nguyên n>3. cmr : kn=1!+2!+3!+...+n! không thể viết dưới dạng a^b với a; b là các số nguyên ; b>1
cho số nguyên dương k với k!=1.2.3....k . cho số nguyên n>3 cmr : kn=1!+2!+3!+...+n! không thể viết dưới dạng a^b với a; b là các số nguyên ; b>1
Cho số nguyên dương k với k!=1.2.3....k . Cho số nguyên n>3. Chứng Minh Rằng :kn=1!+2!+3!+...+n! không thể viết dưới dạng ab với a; b là các số nguyên, b>1.
cho B = ( 3*K+2 / x = 3 K+2 ; K thuộc N ; K < 202 )
a. viết tập hợp B bằng cách liệt kê phần tử
b. tìm phần tử thứ 100 của tập hợp b
Bài 1: Chứng tỏ rằng
a/ k. ( k + 1 ). ( k +2 ) - ( k - 1) . k. ( k+ 1) = 3 . k. ( k + 1 )
với k thuộc N
b/ Tính tổng
S = 1.2 + 2.3 + 3.4 + ................ + 99.100
Tìm số tự nhiên n sao cho:
a) n+3 chia hết cho n-1
b) 4n+3 chia hết cho 2n+1
c) 6n+1 chia hết cho 3n-2
d) 2n+3 chia hết cho 3n+2
Tìm số tự nhiên k sao cho:
a) k.(3k+2) = 5
b) (k+1).(k+2).(k+3) = 2184
Cho k là một số tự nhiên lẻ. Chứng minh rằng ( 1kk+ 2k + 3k+....+ n^k) chia hết cho 1+2+3+4+...+n
Chứng minh : Với k thuộc N* ta luôn có : k.(k+1).(k+2)-(k-1).k.(k+1)=3.k.(k+1)
Áp dụng tính tổng : S=1.2+2.3+3.4+...+n.(n+1).