bài 1: cho x, y thuộc Q. cmr:
|x + y| =< |x| + |y|
bài 2: tính:
\(A=\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right).230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{7}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
bài 3: cho a + b + c = a^2 + b^2 + c^2 = 1 và x : y : z = a : b : c.
cmr: (x + y + z)^2 = x^2 + y^2 + z^2
Tính giá trị của biểu thức:
1)\(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^43^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
2) CHo x , y , z khác 0 và x-y-z=0 Tính \(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{z}\right)\left(1+\frac{y}{z}\right)\)
) Tính giá trị của biểu thức sau bằng các hợp lý : A=\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(7\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}\)
b) Tính: B=\(\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+2017}\right)\)
c) Giả sử x+y+z=2017 và \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=\frac{1}{672}\)
TÍNH tổng C=\(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)
d) Cho ba sô x,y,z thỏa mãn xyz=2017
Tính tổng: D= \(\frac{2017x}{xy+2017x+2017}+\frac{y}{yz+y+2017}+\frac{z}{zx+z+1}\)
Rút gọn: a)\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}.12^{10}}\)
b)\(\frac{\left(-\frac{1}{2}\right)^3-\left(\frac{3}{4}\right)^3.\left(-2\right)^2}{2.\left(-1\right)^5+\left(\frac{3}{4}\right)^2-\frac{3}{8}}\)
Tìm x
a)\(3^{x+1}=9^x\)
b)\(2^{3x+2}=4^{x+5}\)
c)\(3^{2x-1}=243\)
a) Cho 3 số x, y, z là 3 số khác 0 thỏa mãn điều kiện:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
Hãy tính giá trị của biểu thức: \(B=\left(1+\frac{x}{y}\right)\cdot\left(1+\frac{y}{z}\right)\cdot\left(1+\frac{z}{x}\right)\)
b) Tìm x, y, z biết:
\(\left|x-\frac{1}{2}\right|+\left|y+\frac{2}{3}\right|+\left|x^2+xz\right|=0\)
1.Rút gọn biểu thức:
a)A=\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
b)B=\(\frac{x^{24}+x^{20}+x^{16}+...+x^4+1}{x^{26}+x^{24}+x^{22}+...+x^2+1}\)
c)C=\(\frac{51.52.53...100}{1.3.5...99}\)
2.Cho\(\frac{x}{a}\)=\(\frac{y}{b}\)=\(\frac{z}{c}\). Rút gọn A=\(\frac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}\)
3.Cho A=\(\frac{xy^2+y^2.\left(y^2-x\right)+1}{x^2y+2y^4+x^2+2}\)
a)Rút gọn A
b)tìm các giá trị của biến để A đạt giá trị lớn nhất
Cách anh chị nào giỏi xem hộ xem em làm đúng chưa ạ, Em cảm ơn nhiều:tìm x y z\(|\frac{1}{4}-x|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|=0.\)
Vì \(\left|x\right|=xhay\left|-x\right|=x\)do đó giá trị truyệt đối của một số luôn là số dương cho nên để có phép tính cộng có các số hạng là các giá trị tuyệt đối mà bằng 0 thì các số hạng đó sẽ đều là 0.
\(\Rightarrow\left|\frac{1}{4}-x\right|=\left|x-y+z\right|=\left|\frac{2}{3}+y\right|=0\)
\(\Leftrightarrow\frac{1}{4}-x=0\)
\(-x=0-\frac{1}{4}\)
\(-x=-\frac{1}{4}\)
\(x=\frac{1}{4}\)
\(\Leftrightarrow\frac{2}{3}+y=0\)
\(y=0-\frac{2}{3}\)
\(y=-\frac{2}{3}\)
\(\Leftrightarrow x-y+x=0\)
\(\frac{1}{4}-\frac{2}{3}+z=0\)
\(-\frac{5}{12}+z=0\)
\(z=0+\frac{5}{12}\)
\(z=\frac{5}{12}\)
\(\Rightarrow x=\frac{1}{4};y=-\frac{2}{3};z=\frac{5}{12}\)
a)A=\(\frac{16^3.3^{10}+120.6^9}{4^6.3^{12}+6^{11}}\) b)B=\(\frac{45}{19}-\left(\frac{1}{2}\left(\frac{1}{3}+\left(\frac{1}{4}\right)^{-1}\right)^-\right)^{-1}\) c)C=\(\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^{10}.6^{19}-7.2^{29}.27^6}\)
d)D=\(\frac{2^{21}.3^5-4^6.81}{\left(2^2.3\right)^6+8^4.3^5}\) e) E=\(\left(6^9.2^{10}+12^{10}\right):\left(2^{19}.27^3+15.4^9.9^4\right)\)
f) F=\(\frac{3^6.45^4-15^{13}.5^{-9}}{27^4.24^3+45^6}\) g)G=\(\frac{\left(\frac{2}{5}\right)^7.5^7+\left(\frac{9}{4}\right)^3:\left(\frac{3}{16}\right)^3}{2^7.5^2+512}\) h)H=\(x+\frac{0,2-0,375+\frac{5}{11}}{-0,3+\frac{9}{16}-\frac{15}{22}}\)với x=-1/3
1. tìm x trong các tỉ lệ thức sau:
a. \(\left(\frac{1}{3}.x\right):\frac{2}{3}=1\frac{3}{4}:2\)
b. 4,5:0,3 = 2,25:(0,1.x)
c. 8:\(\left(\frac{1}{4}.x\right)=2:0,02\)
c. \(3:2\frac{1}{4}=\frac{3}{4}:\left(6:x\right)\)
2. tìm hai số x,y,z biết rằng
\(\frac{x}{2}=\frac{y}{3},\frac{y}{4}=\frac{z}{5}\) và x+y-z=10