\(=\dfrac{a\left(\sqrt{a}+2\right)-4\left(\sqrt{a}+2\right)}{a-4}=\sqrt{a}+2\)
\(=\dfrac{a\left(\sqrt{a}+2\right)-4\left(\sqrt{a}+2\right)}{a-4}=\sqrt{a}+2\)
a) \(\dfrac{a\sqrt{a}-8+2a-4\sqrt{a}}{a-4}\)
b) \(\dfrac{12\sqrt{6}}{\sqrt{7+2\sqrt{6}}-\sqrt{7-2\sqrt{6}}}\)
Tính: a) A= \(\frac{1+2a}{1+\sqrt{1+2a}}+\frac{1-2a}{1-\sqrt{1-2a}}\)với a= \(\frac{\sqrt{3}}{4}\)
b) B= \(\frac{x\sqrt{x}-2x+28}{x-3\sqrt{x}-4}-\frac{\sqrt{x}-4}{\sqrt{x}+1}+\frac{\sqrt{x}+8}{4-\sqrt{x}}\)với 0 < x khác 16)
a \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
b \(\sqrt{\dfrac{2a}{3}}.\sqrt{\dfrac{3a}{8}}\) với a>0
c \(\sqrt{5a.45a}-3a\) với a<0
a : \(\sqrt{\dfrac{2a}{3}}.\sqrt{\dfrac{3a}{8}}\) với a ≥ 0
b : \(\sqrt{3a}.\sqrt{\dfrac{52}{a}}\)với a ≥ 0
c : \(2y^2.\sqrt{\dfrac{x^4}{4y^2}}\)với y ≤ 0
\(\sqrt{1-4a-4a^2}-2a\)
\(\sqrt{a+2\sqrt{a-1}}+\sqrt{a-2\sqrt{a-1}}\)
\(\sqrt{a+3-4\sqrt{a-1}}+\sqrt{a+8+6\sqrt{a-1}}\)
giải pt M=\(\sqrt{a+2\sqrt{2a-4}}+\sqrt{a-2\sqrt{2a-4}}\)
Rút họn các biểu thức sau:
A=\(\frac{a\sqrt{a}-8+2a-4\sqrt{a}}{a-4}\)
B=\(\frac{12\sqrt{6}}{\sqrt{7+2\sqrt{6}-\sqrt{7-2\sqrt{6}}}}\)
C=\(\frac{\sqrt{c^2+2c+1}}{|c|-1}\)
cho a,b,c >0 hãy đơn giản bt :
A=\(\frac{\sqrt{a^3+2a^2b}+\sqrt{a^4+2a^3b}-\sqrt{a^3}-a^2b}{\sqrt{2a+b-\sqrt{a^2+2ab}}.\left(\sqrt[3]{a^2}-\sqrt[6]{a^5}+a\right)}\)
Cho a, b, c là ba số dương thỏa: \(a+b+c+\sqrt{2abc}\ge10\). Chứng minh rằng:
\(\sqrt{\frac{8}{a^2}+\frac{9b^2}{2}+\frac{c^2a^2}{4}}+\sqrt{\frac{8}{b^2}+\frac{9c^2}{2}+\frac{a^2b^2}{4}}+\sqrt{\frac{8}{c^2}+\frac{9a^2}{2}+\frac{b^2c^2}{4}}\ge6\sqrt{6}\)