CMR: \(\sqrt{2\sqrt{3\sqrt{4\sqrt{.....\sqrt{2000}}}}}< 3\)
cmr: \(\sqrt{2\sqrt{3\sqrt{4...\sqrt{2000}}}}< 3.\)
CMR \(\sqrt{2\sqrt{3\sqrt{4...\sqrt{2000}}}< 3}\)
CMR:\(\sqrt{2\sqrt{3\sqrt{4\sqrt{5...\sqrt{2000}}}}}\)<3
CMR : \(\sqrt{2\sqrt{3\sqrt{4\:...\:\sqrt{2000}}}}\)< 3
Chỉ giúp mình với , mk cảm ơn
giup dum minh voi nha cac ban :
\(\sqrt{4+\sqrt{5.\sqrt{3+5.\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}}\)
cac ban giai giup mk bai nay nha
\(\sqrt{19+8\sqrt{3}}-\sqrt{19-8\sqrt{3}}=?\)
\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=?\)
(\(\frac{x-2\sqrt{x}-1}{x-4}\) - 1 ) / (\(\frac{4-x}{x-\sqrt{x}-6}\) - \(\frac{\sqrt{x}-2}{3-\sqrt{x}}\)- \(\frac{\sqrt{x}-3}{\sqrt{x}+2}\) )
Cac ban oi giup mk nha
1) CMR \(\frac{1}{\sqrt{1.1999}}+\frac{1}{\sqrt{2.1998}}+\frac{1}{\sqrt{3.1997}}+...+\frac{1}{\sqrt{1999.1}}\ge1,999\)
2) CMR \(\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{95\sqrt{94}+94\sqrt{95}}< 1\)
3) CMR \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
4) CMR \(\sqrt{n}< \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}< 2\sqrt{n}\)