a: \(\frac{375\cdot833+822}{377\cdot833-844}\)
\(=\frac{375\cdot833+822}{375\cdot833+2\cdot833-844}=\frac{375\cdot833+822}{375\cdot833+822}\)
=1
b: \(\frac{134^2-670}{133^2-532}=\frac{134\left(134-5\right)}{133\left(133-4\right)}=\frac{134\cdot129}{133\cdot129}=\frac{134}{133}=1+\frac{1}{133}\)
\(\frac{7\cdot\left(13\cdot14-26\cdot28\right)}{26\cdot28-52\cdot56}=\frac{7\cdot13\cdot14\cdot\left(1-2\cdot2\right)}{26\cdot28\left(1-2\cdot2\right)}\)
\(=\frac{7\cdot13\cdot14}{26\cdot28}=7\cdot\frac12\cdot\frac12=\frac74=1+\frac34\)
Ta có: \(\frac{1}{133}=\frac{3}{399}<\frac34\)
=>\(\frac{1}{133}+1<\frac34+1\)
=>\(\frac{134^2-670}{133^2-532}<\frac{7\cdot\left(13\cdot14-26\cdot28\right)}{26\cdot28-52\cdot56}\)
c: \(\frac{2019\cdot2020-1}{2019\cdot2020}=1-\frac{1}{2019\cdot2020}\)
\(\frac{2020\cdot2021-1}{2020\cdot2021}=1-\frac{1}{2020\cdot2021}\)
Ta có: \(2019\cdot2020<2020\cdot2021\)
=>\(\frac{1}{2019\cdot2020}>\frac{1}{2020\cdot2021}\)
=>\(-\frac{1}{2019\cdot2020}<-\frac{1}{2020\cdot2021}\)
=>\(-\frac{1}{2019\cdot2020}+1<-\frac{1}{2020\cdot2021}+1\)
=>\(\frac{2019\cdot2020-1}{2019\cdot2020}<\frac{2020\cdot2021-1}{2020\cdot2021}\)
d: \(31^8<32^8=\left(2^5\right)^8=2^{40}\)
\(128^6=\left(2^7\right)^6=2^{42}>2^{40}\)
=>\(31^8<128^6\)
=>\(\frac{1}{31^8}>\frac{1}{128^6}\)
=>\(\left(\frac{1}{31}\right)^8>\left(\frac{1}{128}\right)^6\)









Mấy bạn giúp mình với ạ. Ai nhanh và đúng mình sẽ tick ạ. Cẳm Uơn Nkieu Nắm

