Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lin

Ai đó giúp mình với!

Cho đường tròn (O;R) và đường thẳng (d) cắt đường tròn (O) tại hai điểm A;B. Từ 1 điểm M trên đưởng thẳng (d) và ở ngoài (O); (d) không qua O , ta vẽ 2 tiếp tuyến MN, MP với đường tròn (O) ( N;P là 2 tiếp điểm)

a, Chứng minh góc NMO = góc NPO

b, Chứng minh đường tròn ngoại tiếp tam giac MNP đi qua 2 điểm cố định khi M lưu động trên đường thẳng (d) 

c, Xác định vị trí điểm M trên đường thẳng (d) sao cho tứ giác MNOP là 1 hình vuông

d, Chứng minh rằng tâm I của đường tròn nội tiếp tam giác MNP lưu động trên 1 đường cố định khi M lưu động trên (d)

Aug.21
1 tháng 7 2019 lúc 8:51

Tự vẽ hình nhé!

a, MN;MP là 2 tiếp tuyến của đường tròn (O) (gt)

\(\Rightarrow\widehat{ONM}=\widehat{OPM}=90^0\Rightarrow\) Tứ giác MNOP nội tiếp ngược

\(\Rightarrow\widehat{NMO}=\widehat{NPO}\)( hai góc nội tiếp cùng chắn chung NO)

b, Gọi C là trung điểm dây AB ta có C cố định

(d) không qua O nên \(OC\perp AB\)

            \(\widehat{OCM}=\widehat{OMN}=\widehat{OPM}=90^0\)

\(\Rightarrow\) C ; N ; P thuộc đường tròn đường kính OM

\(\Rightarrow\) C ; N ; P ; O ; M cùng thuộc một đường tròn

Mà O và C cố định

Do đó đường tròn ngoại tiếp tam giác MNP đi qua 2 điểm cố định O và C khi M lưu động trên đường thẳng (d)

c, Tứ giác MNOP là hình vuông 

\(\Leftrightarrow\) Hình thoi MNOP có \(\widehat{ONM}=90^0\)

\(\Leftrightarrow\) Tứ giác MNOP có MN = ON = OP = PM và \(\widehat{ONM}=90^0\)

\(\Leftrightarrow\)Tam giác OMN vuông cân tại N  \(\Leftrightarrow\) \(OM=ON\sqrt{2}=R\sqrt{2}\)

\(\Leftrightarrow\) M là giao điểm của đường tròn tâm O bán kính \(R\sqrt{2}\) và đường thẳng (d)

d, từ nghĩ đã...

\(\Leftrightarrow\) MN = ON = R ; \(\widehat{ONM}=90^0\)

Aug.21
1 tháng 7 2019 lúc 9:02

cái dòng cuối cùng của ý d là dòng thứ 4 của ý c nhé, bị nhầm đó

d, Làm tiếp:

Giả sử đoạn thẳng OM cắt đường tròn (O) tại I'

OM là tia phân giác \(\widehat{NOP}\)( vì MN;MP là 2 tiếp tuyến của (O))

\(\Rightarrow\widehat{NOM}=\widehat{POM}\Rightarrow\widebat{NI'}=\widebat{PI'}\)

\(sđ\widehat{NPI'}=\frac{1}{2}sđ\widebat{NI'}\)     ;   \(sđ\widehat{MPI'}=\frac{1}{2}sđ\widehat{PI'}\)

Do đó \(\widehat{NPI'}=\widehat{MPI'}\Rightarrow\) PI' là tia phân giác \(\widehat{MPN}\)

\(\Delta MPN\)có MI' là tia phân giác \(\widehat{NMP}\)( vì MN và MP là 2 tiếp tuyến ) và PI' là tia phân giác \(\widehat{MPN}\)nên I' là tâm đường tròn nội tiếp tam giác MNP 

Do đó \(I'\equiv I\)mà I' thuộc đường tròn (O;R)

Mặt khác :  O , I cùng thuộc nửa mặt phẳng bờ d

Do đó I lưu động trên cung lớn AB của đưởng tròn tâm O bán kính R


Các câu hỏi tương tự
tt quỳnh
Xem chi tiết
Hồ Xuân Thái
Xem chi tiết
Hồ Xuân Thái
Xem chi tiết
van hung Pham
Xem chi tiết
phạm việt đức
Xem chi tiết
Vũ Thu Hiền
Xem chi tiết
Ngô Quang Đạt
Xem chi tiết
Xem chi tiết
Đĩ Nguyễn Con
Xem chi tiết