Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nam hai

ai biết làm giúp e vs 

dùng hàng đẳng thức vs lm theo cách lớp 8 ạ

 

Nguyễn Huy Tú
28 tháng 6 lúc 9:31

Bài 1 

\(1,\left(x+1\right)^3-\left(x-4\right)\left(x+4\right)-x^3=x^3+3x^2+3x+1-x^2+16-x^3=2x^2+3x+17\)

2, \(\left(x+2\right)^3-x\left(x+3\right)\left(x-3\right)-12x^2-8=x^3+6x^2+12x+8-x\left(x^2-9\right)-12x^2-8\)

\(=x^3+6x^2+12x+8-x^3+9x-12x^2-8=-6x^2+21x\)

3, \(\left(x-2\right)^3-x\left(x-2\right)\left(x+2\right)+6x\left(x-3\right)\)

\(=x^3-6x^2+12x-8-x\left(x^2-4\right)+6x^2-18x\)

\(=x^3+12x-8-x^3+4x-18x=2x=8\)

4, \(x\left(x-5\right)\left(x+5\right)-\left(x-5\right)^3+100x\)

\(=\left(x-5\right)\left[x^2+5x-\left(x-5\right)^2\right]+100x\)

\(=\left(x-5\right)\left(x^2+5x-x^2+10x-25\right)+100x=\left(x-5\right)\left(15x-25\right)+100x\)

\(=15x^2-100x+125+100x=15x^2+125\)

5, \(\left(x-3y\right)^3-\left(x-2y\right)\left(2y+x\right)=x^3-9x^2y+27xy^2-27y^3-x^2+4y^2\)

6, \(\left(-x-2y\right)^3+x\left(2y-x\right)\left(x+2y\right)=-\left(x+2y\right)^3+x\left(2y-x\right)\left(x+2y\right)\)

\(=\left(x+2y\right)\left[-\left(x+2y\right)^2+2xy-x^2\right]=\left(x+2y\right)\left(-x^2-4xy-4y^2+2xy-x^2\right)=\left(x+2y\right)\left(-2x^2-2xy-4y^2\right)\)

\(=\left(x+2y\right)\left(-2x^2-2xy-4y^2\right)=-2x^3-2x^2y-4xy^2-4x^2y+4xy^2-8y^3=-2x^3-6x^2y-8y^3\)

7, \(-\left(2x-y\right)^3-x\left(2x-y\right)^2-y^3\)

\(=-\left(8x^3-12x^2y+6xy^2-y^3\right)-x\left(4x^2-4xy+y^2\right)-y^3=-12x^3+16x^2y-7xy^2\)

8, \(-x\left(x-y\right)^2+\left(x-y\right)^3+y^2\left(y-2x\right)\)

\(=-x\left(x^2-2xy+y^2\right)+x^3-3x^2y+3xy^2-y^3+y^3-2xy^2=-x^2y\)

HT.Phong (9A5)
28 tháng 6 lúc 9:23

Bài 6:

1)

\(8x^3-12x^2+6x-1=0\\ \Leftrightarrow\left(2x-1\right)^3=0\\ \Leftrightarrow2x-1=0\\ \Leftrightarrow2x=1\\ \Leftrightarrow x=\dfrac{1}{2}\)

2) 

\(x^3-6x^2+12x-8=0\\ \Leftrightarrow\left(x-2\right)^3=0\\ \Leftrightarrow x-2=0\\ \Leftrightarrow x=2\)

3) 

\(x^2-8x+16=5\left(4-x\right)^3\\ \Leftrightarrow\left(x-4\right)^2-5\left(4-x\right)^3=0\\ \Leftrightarrow\left(4-x\right)^2-5\left(4-x\right)^3=0\\ \Leftrightarrow\left(4-x\right)^2\left[1-5\left(4-x\right)\right]=0\\ \Leftrightarrow\left(4-x\right)^2\left(5x-19\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{19}{5}\end{matrix}\right.\)

4) 

\(\left(2-x\right)^3=6x\left(x-2\right)\\ \Leftrightarrow\left(2-x\right)^3-6x\left(x-2\right)=0\\ \Leftrightarrow\left(2-x\right)^3+6x\left(2-x\right)=0\\ \Leftrightarrow\left(2-x\right)\left[\left(2-x\right)^2+6x\right]=0\\ \Leftrightarrow\left(2-x\right)\left(4-4x+x^2+6x\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x^2+2x+4\right)=0\\ \Leftrightarrow2-x=0\\ \Leftrightarrow x=2\)

(vì x^2+2x+4=x^2+2x+1+3=(x+1)^2+3>0) 


Các câu hỏi tương tự
Zi Heo
Xem chi tiết
Zi Heo
Xem chi tiết
Ut02_huong
Xem chi tiết
Nhat_anh_123_3_12
Xem chi tiết
Zi Heo
Xem chi tiết
Zi Heo
Xem chi tiết
Zi Heo
Xem chi tiết
Zi Heo
Xem chi tiết
Zi Heo
Xem chi tiết
Nguyễn Tuấn Phong
Xem chi tiết