Câu a đơn giản
b)
\(A=\frac{x^4-x^3-x+1}{x^4+x^3+3x^2+2x+2}=\frac{\left(x^4-x^3\right)-\left(x-1\right)}{\left(x^4+x^3+\frac{x^2}{4}\right)+\left(\frac{11}{4}x^2+2x+\frac{4}{11}\right)+1-\frac{4}{11}}\)
\(=\frac{\left(x-1\right)\left(x^3-1\right)}{\left(x^2+\frac{x}{2}\right)^2+\left(\frac{\sqrt{11}}{2}+\frac{2}{\sqrt{11}}\right)^2+\frac{7}{11}}\)
\(=\frac{\left(x-1\right)^2\left(x^2+x+1\right)}{\left(x^2+\frac{x}{2}\right)^2+\left(\frac{\sqrt{11}}{2}+\frac{2}{\sqrt{11}}\right)^2+\frac{7}{11}}\)
\(=\frac{\left(x-1\right)^2\left[\left(x^2+x+0,25\right)+0,75\right]}{\left(x^2+\frac{x}{2}\right)^2+\left(\frac{\sqrt{11}}{2}+\frac{2}{\sqrt{11}}\right)^2+\frac{7}{11}}\)
\(=\frac{\left(x-1\right)^2\left[\left(x+0,5\right)^2+0,75\right]}{\left(x^2+\frac{x}{2}\right)^2+\left(\frac{\sqrt{11}}{2}+\frac{2}{\sqrt{11}}\right)^2+\frac{7}{11}}\)
Vì \(\left(x-1\right)^2\left[\left(x+0,5\right)^2+0,75\right]>0\)và \(\left(x^2+\frac{x}{2}\right)^2+\left(\frac{\sqrt{11}}{2}+\frac{2}{\sqrt{11}}\right)^2+\frac{7}{11}>0\)
nên \(A>0\)hay A ko âm
Nhớ k nha !