Ta có:
\(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{98.100}\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{2.4}+\frac{1}{4,6}+\frac{1}{6.8}+...+\frac{1}{98.100}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(\Rightarrow A=\frac{1}{2}.\frac{49}{100}=\frac{49}{200}\)
Đặt \(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{98.100}\)
\(4-2=2;6-4=2;...\)
\(2A=\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(2A=\frac{1}{2}-\frac{1}{100}\)
\(2A=\frac{49}{100}\)
Đơn giản thôi:
Phân tích: \(\frac{1}{2.4}=\frac{1}{2}-\frac{1}{4};...\)
Từ đó ta có phân số \(\frac{1}{2}\)
thầy giáo tớ bảo là \(\frac{49}{100}\) là sai
Ta có :
A=1/2.4+1/4.6+...+1/98.100
=> A=1.2/2.4.2+1.2/4.6.2+...+1.2/98.100.2
=> A=1/2.(2/2.4+2/4.6+...+2/98.100)
=> A=1/2.(1-1/4+1/4-1/6+...+1/98-1/100)
=> A=1/2.(1-1/100)
=> A=1/2.99/100
=> A=99/200
Vậy A=99/200
\(A=\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+\frac{1}{6\cdot8}+...+\frac{1}{98\cdot100}\)
=>\(2A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+....+\frac{2}{98\cdot100}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{50}{100}-\frac{1}{100}\)
\(=\frac{49}{100}\)
\(A=\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+\frac{1}{6\cdot8}+...+\frac{1}{98\cdot100}\)
=>\(2A=\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{98\cdot100}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{50}{100}-\frac{1}{100}\)
\(=\frac{49}{100}\)
=> A= 2A : 2
=> \(A=\frac{49}{100}:2\)
\(=\frac{49}{100}\cdot\frac{1}{2}\)
\(=\frac{49}{200}\)
\(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{98.100}\)
\(2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\)
\(2A=\frac{1}{2}-\frac{1}{100}\)
\(2A=\frac{49}{100}\)
\(A=\frac{49}{100}:2\)
\(A=\frac{49.1}{100.2}=\frac{49}{200}\)