\(A=\frac{1}{1.2.3}-\frac{1}{2.3.4}-........-\frac{1}{97.98.99}\)
\(2A=\frac{2}{1.2.3}-\frac{2}{2.3.4}-........-\frac{2}{97.98.99}\)
\(2A=-\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{97.98.99}\right)\)
\(2A=-\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+......+\frac{1}{97.98}-\frac{1}{98.99}\right)\)
\(2A=-\left(\frac{1}{1.2}-\frac{1}{98.99}\right)\)
\(2A=-\frac{2425}{4851}\)
\(A=-\frac{2425}{4851}:2\)
\(A=-\frac{2425}{9702}\)
A= 1-1/2-1/3-1/2-1/3-1/4-....-1/97-1/98-1/99
A=1-1/99
A=99/99-1/99
A= 98/99