a, a+b+c=0 => a+b=-c
=>(a+b)3=(-c)3
=>a3+3ab(a+b)+b3=-c3
=>a3-3abc+b3=-c3
=>a3+b3+c3=3abc
b, a2+b2+c2=ab+bc+ca
<=>2(a2+b2+c2)=2(ab+bc+ca)
<=>2a2+2b2+2c2-2ab-2bc-2ca=0
<=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2)=0
<=>(a-b)2+(b-c)2+(c-a)2=0
Mà \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Rightarrow a=b=c}\)