\(\left(a+b+c\right)^2-2\left(a+b+c\right)\left(b+c\right)+\left(b+c\right)^2\)
\(=\left[\left(a+b+c\right)-\left(b+c\right)\right]^2\)
\(=a^2\)
`(a+b+c)^2-2(a+b+c)(b+c)+(b+c)^2`
`=(a+b+c-b-c)^2`
`=a^2`
Áp dụng hđt2
\(\left(a+b+c\right)^2-2\left(a+b+c\right)\left(b+c\right)+\left(b+c\right)^2\)
\(=\left[\left(a+b+c\right)-\left(b+c\right)\right]^2\)
\(=a^2\)
`(a+b+c)^2-2(a+b+c)(b+c)+(b+c)^2`
`=(a+b+c-b-c)^2`
`=a^2`
Áp dụng hđt2
chứng minh các hằng đằng thức sau :
a)(a+b+c)^2 +(b+c-a)^2 +(c+a-b)^2 +(a+b-c)^2=4(a^2+b^2+c^2)
b)(a+b+c+d)^2 +(a+b-c-d)^2 +(a+c-b-d)^2 +(a+c-b-d)^(a+d-b-c)^2=4(a^2+b^2+c^2+d^2)
Ta có: a^2 + b^2 + c^2 = ab + bc + ca
<=> 2.a^2 + 2.b^2 + 2.c^2 = 2.ab + 2.bc + 2.ca
<=> ( a^2 - 2ab + b^2 ) + ( b^2 - 2bc +c^2 ) + ( c^2 - 2ac + a^2 ) =0
<=> (a-b)^2 + (b-c)^2 + (c -a)^2 =0 (1)
Vì (a-b)^2 ; (b-c)^2 ; (c -a)^2 ≧ 0 với mọi a,b,c.
=> (a-b)^2 + (b-c)^2 + (c -a)^2 ≧ 0 (2)
Từ (1) và (2) khẳng định dấu "=" khi:
a - b = 0; b - c = 0 ; c - a = 0 => a=b=c
Vậy a=b=c.
1, Cho a/b = c/d . C/m (a+b/c+d)^2=a^2+b^2/c^2+d^2 ?
2, Cho (a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)
C/m a/b=c/d ?
Cho a/c = c/b . Chứng minh rằng : a) a^2 + c^2 /b^2 + c^2 = a/b b)b^2 - a^2 / a^2 + c^2 = b-a / a
Rút gọn các biểu thức sau:
a) 2x(2x-1)^2 - 3x(x+3)(x-3) - 4x(x+1)^2
b) (a-b+c)^2 - (b-c)^2 + 2ab-2ac
c) (3x+1)^2 - 2(3x+1)(3x+5) + (3x+5)^2
d) (3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)
e) (a+b-c)^2 + (a-b+c)^2 - 2(b-c)^2
g) (a+b+c)^2 + (a-b-c)^2 + (b-c-a)^2 + (c-a-b)^2
h) (a+b+c+d)^2 + (a+b-c-d)^2 + (a+c-b-d)^2 + (a+d-b-c)^2
Rút gọn các biểu thức sau:
a) 2x(2x-1)^2 - 3x(x+3)(x-3) - 4x(x+1)^2
b) (a-b+c)^2 - (b-c)^2 + 2ab-2ac
c) (3x+1)^2 - 2(3x+1)(3x+5) + (3x+5)^2
d) (3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)
e) (a+b-c)^2 + (a-b+c)^2 - 2(b-c)^2
g) (a+b+c)^2 + (a-b-c)^2 + (b-c-a)^2 + (c-a-b)^2
h) (a+b+c+d)^2 + (a+b-c-d)^2 + (a+c-b-d)^2 + (a+d-b-c)^2
Cho a/b=c/d cm rằng a)a/a-b=c/c-d
b) a/b=a+c/b+d
c) a/3a+b=c/3c+d
d)a.b/bd=a^2+c^2/b^2+d^2
E) a.b/c.d=a^2-b^2/c^2-d^2
F) a.b/c.d=(a-b)^2/(c-d)^2
Cho 3 số a,b,c đôi một khác nhau.CMR
b-c/(a-b)(a-c)+c-a/(b-c)(b-a)+a-b/(c-a)(c-b)=2/a-b+2/b-c+2/c-a
Cho ba số a,b,c khác nhau. Chứng minh rằng :
(b-c) / (a-b).(a-c) + (c-a) / (b-c).(b-a) + (a-b) / (c-a).(c-b) = 2/(a-b) + 2/(b-c) + 2/(c-a)
cho a/c= c/b , CMR :
a) a^2+ c^2 / b^2 + c^2 = a/b
b) b^2 - a^2 / a^2 + c^2 = b-a/a