a,b,c>0, a+b+c=2. CMR: \(\dfrac{a}{\sqrt{4a+3bc}}+\dfrac{b}{\sqrt{4b+3ac}}+\dfrac{c}{\sqrt{4c+3ab}}\le1\)
cho a,b,c>0 và a+b+c=1 cmr căn(4a+1)+căn(4b+1)+căn(4c+1)<5
Với các số không âm a, b, c sao cho không có 2 số nào đồng thời bằng 0 và a+ b+ c= 2. CMR:
\(\frac{a}{\sqrt{4a+3bc}}+\frac{b}{\sqrt{4b+3ca}}+\frac{c}{\sqrt{4c+3ab}}\le1\)
cho các số dương a,b,c thỏa mãn a+2b+3c=3. chứng minh a^2/(a+2b+căn 2ab)+4b^2/(2b+3c+căn 6bc)+9c^2/(3c+a+cawn 3ac)>=1
Cho a;b;c >0;a3+b3+c3≐3
Tìm GTLN của P≐3ab+3ac+3bc−abc≐3ab+3ac+3bc−abc
cho a,b,c>0 CMR căn(a*(b+1))+căn(b(c+1)+căn(c(a+1))<=3/2(a+1)(b+1)(c+1)
a,b,c>0 a+b+c=1 cmr B=căn (a^2-ab+b^2)+căn(b^2-bc+c^2)+căn(c^2-ac+a^2)>=1
Với a,b,c>0 CMR
a/a+căn[(a+b)(a+c)] + b/b+căn[(a+b)(b+c)] + c/c+căn[(a+c)(b+c)] bé hơn hoặc bằng 1
Cho a,b,c>0 thoả mãn \(a^2+b^2+c^2=1\)
CMR : \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}+\frac{b^2+bc+1}{\sqrt{b^2+3bc+a^2}}+\frac{c^2+ca+1}{\sqrt{c^2+3ac+b^2}}\ge\sqrt{5}\left(a+b+c\right)\)