cho a;b;c là các số thực duong.CMR:
\(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{a+b+c}{6}\)
Chứng minh rằng nếu a , b , c > 0 thỏa mãn abc = ab + bc + ca thì \(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}<\frac{3}{16}\left(\le\frac{3}{32}\right)\)
a) Cho a,b,c>0. chứng minh rằng:\(\frac{a}{3a^2+2b^2+c^2}+\frac{b}{3b^2+2c^2+a^2}+\frac{c}{3c^2+2a^2+b^2}\le\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho a;b;c là các số dương . Chứng minh rằng:
\(\frac{2a^3}{a^6+bc}+\frac{2b^3}{b^6+ca}+\frac{2c^3}{c^6+ab}\le\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\)
Cho các số thực a,b,c khác 0. Chứng minh rằng :
\(\frac{a^2-bc}{a^2+2b^2+3c^2}+\frac{b^2-ca}{b^2+2c^2+3a^2}+\frac{c^2-ab}{c^2+2a^2+3b^2}\ge0\)
Cho a, b, c >0. Chứng minh:
a)\(\frac{1}{2a+3b+3c}\) +\(\frac{1}{2b+3c+3a}\) +\(\frac{1}{2c+3a+3b}\) \(\le\) \(\frac{1}{4}\) (\(\frac{1}{a+b}\) +\(\frac{1}{b+c}\) +\(\frac{1}{c+a}\) )
b)\(\frac{1}{a+2b+3c}\) +\(\frac{1}{b+2c+3a}\) +\(\frac{1}{c+2a+3b}\) \(\le\) \(\frac{1}{2}\) (\(\frac{1}{a+2c}\) +\(\frac{1}{b+2a}\) +\(\frac{1}{c+2b}\) )
\(\frac{a}{3a^2+2b^2+c^2}+\frac{b}{3b^2+2c^2+a^2}+\frac{c}{3c^2+2a^2+b^2}\le\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho a,b,c là độ dài ba cạnh của một tam giác. Chứng minh rằng:
\(\frac{a}{2b+3c}+\frac{b}{2c+3a}+\frac{c}{3b+2a}\ge\frac{3}{5}\)
cho các số thực a;b;c thỏa mãn a+b+c\(\le6\)tìm gtln của biểu thức P=\(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\)