A=9/1.2+ 9/2.3+ 9/3.4+ .... +9/98.99 + 9/99/100
=9(1- 1/2 + 1/2 -1/3+...+1/99 -1/100)
=9.(1- 1/100)
=9.99/100
=891/100
A=9/1.2+9/2.3+...+9/99.100
A/9=1/1.2+1/2.3+....+1/99.100
A/9=1-1/2+1/2-1/3+....+1/99-1/100
A/9=1+(-1/2+1/2)+(-1/3+1/3)+....+(-1/99+1/99)-1/100
A/9=1-1/100
A/9=99/100
A=99/100.9=891/100
Vậy A=891/100
mik ko biết đúng hay sai mn góp ý giúp mik nha
\(A=\frac{9}{1\cdot2}+\frac{9}{2\cdot3}+\frac{9}{3\cdot4}+...+\frac{9}{98\cdot99}+\frac{9}{99\cdot100}\)
\(\Rightarrow A=9\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{98\cdot99}+\frac{1}{99\cdot100}\right)\)
\(\Rightarrow A=9\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{99}-\frac{1}{100}\right)\)
\(\Rightarrow A=9\left(1-\frac{1}{100}\right)=9\cdot\frac{99}{100}=\frac{891}{100}\)
HK TỐT #
\(A=\frac{9}{1.2}+\frac{9}{2.3}+...+\frac{9}{98.99}+\frac{9}{99.100}\)
\(=9\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=9\left(1-\frac{1}{100}\right)\)
\(=9.\frac{99}{100}\)
\(=\frac{891}{100}\)
\(A=\frac{9}{1\cdot2}+\frac{9}{2\cdot3}+\frac{9}{3\cdot4}+...+\frac{9}{99\cdot100}\)
\(A=9\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{99\cdot100}\right)\)
\(A=9\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=9\cdot\frac{99}{100}\)
\(A=\frac{891}{100}\)