Chứng minh : \(\left(1976^{1976}-1974^{1974}\right).\left(1976^{1975}+1974^{1973}\right)⋮10000\)
a, CMR với mọi số nguyên n không chia hết cho 5 thì \(n^4-1\) chia hết cho 5
b, Tìm tất cả các số nguyên tố a, b, c ,d, e tm \(a^4+b^4+c^4+d^4+e^4=abcde\)
c, Tìm các số nguyênduwongc a,b tm \(a\left(ab+1\right)⋮a^2+b\) và \(b\left(ab+1\right)⋮b^2-a\)
a,Giải phương trình nghiệm nguyên: \(\left(x+1\right)^4-\left(x-1\right)^4=8y^2\)
b, Cho a,b,c là các số nguyên sao cho \(a^2-bc,b^2+2ac,c^2-4ab\) là các đồng thời chia hết cho 3. CMR a+b+c chia hết cho 3
Chứng minh : Với mọi n thuộc Z ta có :
a) \(n^2\left(n-1\right)\)chia hết cho 12
b)\(n^2\left(n^4-1\right)\) chia hết cho 60
c) \(n^5-n\) chia hết cho 30
d) \(2n\left(16-n^4\right)\) chia hết cho 30.
1)chứng ninh rằng
a)\(n\cdot\left(n^2+1\right)\cdot\left(n^2+4\right)\)chia hết cho 5
b)\(9\cdot10^n+18\)chia hết cho 27 với mọi n thuộc N
2)Nếu n không chia hết cho 4 thì \(1^n+2^n+3^n+4^n\) chia hết cho 5
3)Tìm số tự nhiên n để \(3^n+63\)chia hết cho 72
Cho \(A=n\left(n^2+1\right)\left(n^2+4\right)\). Tìm điều kiện của n để A chia hết cho 120
1) thực hiện phép tính
a) \(2\sqrt{\dfrac{16}{3}}-3\sqrt{\dfrac{1}{27}}-6\sqrt{\dfrac{4}{75}}\)
b) \(\left(6\sqrt{\dfrac{8}{9}}-5\sqrt{\dfrac{32}{25}}+14\sqrt{\dfrac{18}{49}}\right).\sqrt{\dfrac{1}{2}}\)
c) \(\sqrt{\left(\sqrt{2}-2\right)^2}-\sqrt{6+4\sqrt{2}}\)
giúp mk vs ạ mk đang cần gấp
Rút gọn biểu thức sau
A=\(\dfrac{1}{x-1}\sqrt{75\left(x-1\right)^3}\left(x>1\right)
\)
B=\(5\sqrt{4x}-3\sqrt{\dfrac{100x}{9}}-\dfrac{4}{x}\sqrt{\dfrac{x^3}{4}}\left(x>0\right)
\)
C=\(x-4+\sqrt{16-8x+x^2}\left(x>4\right)\)
Help me
Chứng mjnh \(\left(4-\sqrt{15}\right)^n+\left(4+15\right)^n\)chia hết cho 2 với mọi n