\(a,6\left(x-2\right)=8\left(3x+1\right)\\ \Leftrightarrow6x-12=24x+8\\ \Leftrightarrow18x+20=0\\ \Leftrightarrow x=-\dfrac{10}{9}\\ b,2x-\left(3-7x\right)=5\left(x+3\right)\\ \Leftrightarrow2x-3+7x=5x+15\\ \Leftrightarrow9x-3-5x-15=0\\ \Leftrightarrow4x-18=0\\ \Leftrightarrow x=\dfrac{9}{2}\\ c,\left(x-1\right)^2=\left(x+3\right)\left(x+2\right)\\ \Leftrightarrow x^2-2x+1=x^2+5x+6\\ \Leftrightarrow7x+5=0\\ \Leftrightarrow x=-\dfrac{5}{7}\\ d,\left(3x-9\right)\left(4x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x-9=0\\4x+5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{4}\end{matrix}\right.\)
\(e,x^2-3x+2=0\\ \Leftrightarrow\left(x^2-x\right)-\left(2x-2\right)=0\\ \Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\\ \left(x-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\\ f,x^2-4x+4=0\\ \Leftrightarrow x^2-2.2+2^2=0\\ \Leftrightarrow\left(x-2\right)^2=0\\ \Leftrightarrow x-2=0\\ x=2\)
a, \(6x-12=24x+8\Leftrightarrow18x=-20\Leftrightarrow x=-\dfrac{20}{18}=-\dfrac{10}{9}\)
b, \(2x-3+7x=5x+15\Leftrightarrow4x=18\Leftrightarrow x=\dfrac{9}{2}\)
c, \(x^2-2x+1=x^2+5x+6\Leftrightarrow7x=-5\Leftrightarrow x=-\dfrac{5}{7}\)
d, \(\left[{}\begin{matrix}3x-9=0\\4x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{4}\end{matrix}\right.\)
e, \(x^2-3x+2=0\Leftrightarrow x^2-2x-x+2=0\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow x=1;x=2\)
f, \(\left(x-2\right)^2=0\Leftrightarrow x=2\)