\(A=\left(5-\dfrac{2}{5}+\dfrac{1}{7}\right)-\left(3+\dfrac{4}{5}-9-\dfrac{5}{7}\right)-\left(1+\dfrac{4}{5}-\dfrac{6}{7}\right)\)
\(=5-\dfrac{2}{5}+\dfrac{1}{7}+6-\dfrac{4}{5}+\dfrac{5}{7}-1-\dfrac{4}{5}+\dfrac{6}{7}\)
\(=10-2+\dfrac{12}{7}\)
\(=\dfrac{68}{7}\)
=> 5−25+17+6−45+57−1−45+67=5−25+17+6−45+57−1−45+67
= >687
A = \(\left[5-\dfrac{2}{5}+\dfrac{1}{7}\right]-\left[3+\dfrac{4}{5}-9-\dfrac{5}{7}\right]-\left[1-\left(-\dfrac{4}{5}\right)-\dfrac{6}{7}\right]\)
= \(\left[5-\dfrac{2}{5}+\dfrac{1}{7}\right]-\left[\dfrac{4}{5}-6-\dfrac{5}{7}\right]-\left[1+\dfrac{4}{5}-\dfrac{6}{7}\right]\)
= \(5-\dfrac{2}{5}+\dfrac{1}{7}-\dfrac{4}{5}+6+\dfrac{5}{7}-1-\dfrac{4}{5}+\dfrac{6}{7}\)
= \(10-2+\dfrac{12}{7}\)
= \(\dfrac{68}{7}\)