Ta có: \(a^4+b^4\ge2a^2b^2\) (BĐT Cô-si) \(\Rightarrow\left(a^4+b^4\right)^2\ge\left(a^4+b^4\right)2a^2b^2\) \(\Leftrightarrow\left(a^4+b^4\right)^2\ge\left(a^4+b^4\right)\left(a^2b^2+a^2b^2\right)\ge\left(a^3b+ab^3\right)^2\) (BĐT Bunhiacopxki) \(\Rightarrow\left(a^4+b^4\right)^2\ge\left(a^3b+ab^3\right)^2\) \(\Rightarrow a^4+b^4\ge a^3b+ab^3\) (ĐPCM)