\(A=3\cdot\frac{1}{1\cdot2}-5\cdot\frac{1}{2\cdot3}+7\cdot\frac{1}{3\cdot4}-\cdots+15\cdot\frac{1}{7\cdot8}-17\cdot\frac{1}{8\cdot9}\)
\(=\frac{3}{1\cdot2}-\frac{5}{2\cdot3}+\frac{7}{3\cdot4}-\cdots+\frac{15}{7\cdot8}-\frac{17}{8\cdot9}\)
\(=1+\frac12-\frac12-\frac13+\frac13+\frac14-\cdots+\frac17+\frac18-\frac18-\frac19\)
\(=1-\frac19=\frac89\)
áp dụng công thức này là làm được bạn ạ:
\(\frac{a}{b.c}\) =\(\frac{a}{b}-\frac{a}{c}\)